已知数列an的前n项和sn=1+(r-1)an(常数r不等于2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 03:06:14
已知数列an的前n项和sn=1+(r-1)an(常数r不等于2)
求an
求an
当n=1时,S1=1+(r-1)a1=a1解得:a1=1/(r-2).
当n>1时,Sn=1+(r-1)an (1) Sn-1=1+(r-1)an-1 (2)
由Sn-Sn-1=[1+(r-1)an ]-[1+(r-1)an-1]=an
整理得:(r-2)an=(r-1)an-1
若r=1,则an-1=0,又a1=1/(r-2)!=0.所以r!=1.
所以an=[(r-1)/(r-2)]an-1
所以an是以公比q=(r-1)/(r-2),首项为1/(r-2)的等比数列.
所以an=a1q^(n-1)=(1/(r-2))[(r-1)/(r-2)]^(n-1)
=-[(r-1)^(n-1)]/(r-2)^n
当n>1时,Sn=1+(r-1)an (1) Sn-1=1+(r-1)an-1 (2)
由Sn-Sn-1=[1+(r-1)an ]-[1+(r-1)an-1]=an
整理得:(r-2)an=(r-1)an-1
若r=1,则an-1=0,又a1=1/(r-2)!=0.所以r!=1.
所以an=[(r-1)/(r-2)]an-1
所以an是以公比q=(r-1)/(r-2),首项为1/(r-2)的等比数列.
所以an=a1q^(n-1)=(1/(r-2))[(r-1)/(r-2)]^(n-1)
=-[(r-1)^(n-1)]/(r-2)^n
已知数列An的前n项和为Sn=r^n-1,且a5/a2=27,
等比数列{An}的前n项和为Sn,已知对任意的n属于n的正整数,y=b^x+r(b》0却b不等于1,b.r均为常数)的图
已知数列an的前n项和sn满足:sn=a-1分之a(an-1)(a为常数,且a不等于0,a不等于1)求an的通项公式
已知数列{an}的前n项和为sn(p是常数,且P不等于0和1),且对任意的自然数n,总有sn=p(an-1),数列bn=
已知数列{an}得前n项和为sn=an^2+bn(a,b为常数且a不等于0)求证数列{an}是等差数列
等比数列{an}前n项和sn,对任意的n属于N+,点(n,sn),均在函数y=b^x+r(b>0,且b不等于1,r常数)
设Sn为数列an的前n项和,Sn=kn∧2+n+r,n∈N*,(k是常数).(1)若an为等差数列,求r的值.(2)若r
设数列{an}的前n项和为Sn,其中an不等于0,a1为常数,且一a1,Sn,an十1成...
试证明:数列{an}为等差数列的充要条件是其前n项和Sn=an^2+bn(常数a,b∈R) 感激.
设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n(c为常数,c不等于1,n属于正整数)
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
若数列{an}的前n项和Sn与通项公式an之间满足关系Sn=1+pan(p为不等于0且不等于1的常数).试求出数列{an