作业帮 > 数学 > 作业

在△ABC中若∠C=π/3,sinA,sinB,sinC成等差数列,且CA(AB-AC)=18求c边的长

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 17:21:49
在△ABC中若∠C=π/3,sinA,sinB,sinC成等差数列,且CA(AB-AC)=18求c边的长
是向量CA(AB-AC)
在△ABC中若∠C=π/3,sinA,sinB,sinC成等差数列,且CA(AB-AC)=18求c边的长
应该是sinA,sinC,sinB成等差数列

sinA+sinB=2sinC,
∴a+b=2c.(正弦定理)
∴a^2+b^2+2ab=4c^2.(1)
∵向量CA(AB-AC)=18,∴向量CA·CB=18,
∴|CA||CB|cosπ/3=18,即ab=36.(2)
由余弦定理,c^2=a^2+b^2-ab,(3)
由(1)(2)(3)解得:
c=6.