正项数列{an}满足:an2-(2n-1)an-2n=0.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:02:43
正项数列{an}满足:an2-(2n-1)an-2n=0.
(1)求数列{an}的通项公式an;
(2)令bn=
(1)求数列{an}的通项公式an;
(2)令bn=
1 |
(n+1)a
(1)由正项数列{an}满足:
a2n-(2n-1)an-2n=0, 可得(an-2n)(an+1)=0 所以an=2n. (2)因为an=2n,bn= 1 (n+1)an, 所以bn= 1 (n+1)an = 1 2n(n+1) = 1 2( 1 n− 1 n+1), Tn= 1 2(1− 1 2+ 1 2− 1 3+…+ 1 n− 1 n+1) = 1 2(1− 1 n+1) = n 2n+2. 数列{bn}的前n项和Tn为 n 2n+2.
己知各项均为正数的数列{an}满足an+12-an+1an-2an2=0(n∈N*),且a3+2是a2,a4的等差中项.
求数列通项1.已知数列{an}满足:a(n+1)方=an方+4且a1=1,an>0,求an2.在数列{an}中,a1=2
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).
正项数列{an}满足an²-(2n-1)an-2n=0,求数列{an}的通项公式
已知数列{an}的前n项的和Sn,满足6Sn=an2+3an+2且an>0.(1)求首项a1;(2)证明{an}是
已知数列{an}满足an+1=2an+n+1(n∈N*).
已知数列{an}中,an>0且an2-2anSn+1=0,其中Sn为数列{an}的前n项和.
已知数列{an}中,a1=2,a(n+1)=an2+2an(n∈N*).(1)证明数列{lg(1+an)}是等比数列,
数列的通项公式的求法1.累加法已知数列{an}满足an+1=an+2n+1,a1=1,求an2.累乘法已知数列{an}满
已知正项数列[an}满足:a1=3,(2n-1)an+2=(2n+1)an-1+8n^2(n>1,n∈N*)求数列{an
若数列{an}中,a1=3,且an+1=an2(n∈N*),则数列的通项an=______.
(2014•山西模拟)已知Sn为正项数列{an}的前n项和,且an+12-an+1+2=an2,S29=a292,则a1
|