解析几何,点P在椭圆PQ+PR取值范围是
已知点F1,F2是椭圆的两个焦点.点P在椭圆上,∠F1PF2=60度,求椭圆离心率的取值范围
已知正方形ABCD,E是BD上一点,且BE=BC,又P点在EC上,PR垂直BE,PQ垂直BC,求PR+PQ=?.
已知椭圆的中心在原点,焦点在x轴上,且经过点p(2,1),则该椭圆的长半轴的取值范围是?
已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是( )
若在椭圆上存在一点P,求椭圆离心率的取值范围
设F是椭圆x^2/4+y^2=1的左焦点,o为坐标原点,点P在椭圆上,则向量PF*向量PO的取值范围是?
△ABC中,P、Q分别是BC、AC上的点,PR⊥AB于R,PS⊥AC于S,若PR=PS,AQ=PQ,求证:(1)点P在∠
椭圆x的平方除4加y的平方除3等于1的左,右顶点分别为A1,A2,点P在椭圆上且直线pA2斜率的取值范围是{一2,-1}
对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( )
对于抛物线y^2=4x上任意一点Q,点P(a,0)都满足PQ>=a,则a的取值范围是?
如图,正方形ABCD的边长是4,点E在BD上,BE=BC,P是CE上任意一点,PQ⊥BC于Q,PR⊥BE于R,则PQ+P
p是椭圆x2/4+y2=1上的点,求p到直线:2x+3y-8=0的距离的取值范围