若偶函数y=f(x)在(-∞,0)是增函数.比较f(-2).f(π),f(根号3/2)
y=f(x)是偶函数,在零到正无穷上为增函数,比较f(-2),f(-3)的大小,
函数y=f(x)在(0,2)上是增函数.y=f(x+2)是偶函数,比较f(1),f(5/2),f(7/2) 的大小
若定义域为R函数f(x)满足f(x+y)=2*f(x)*f(y),且f(0)不等于0,证明f(x)是偶函数
f(x)是定义R上的偶函数,且f(x)在(-无穷大,0】上的增函数,比较f(-3/4)与f(2)的大小
函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,比较f(1),f(5/2),f(7/2)的大小
函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,试比较f(1),f(2.5),f(3.5)的大小(
y=f(x)是偶函数,y=f(x-2)在区间[0,2]上是减函数,则f(0),f(-1),f(-2)的大小
定义在R上的偶函数f(x),满足f(x+1)=-f(x),则比较f 3 ,f 2 ,f 根号二 的大小
若函数y=f(x)是偶函数,其定义域为{x|x≠0},且函数f(x)在(0,+∞)上是减函数,f(2)=0,则函数f(x
定义在R上的偶函数f(x),满足f(x+1)=—f(x),且在区间[-1,0]上为增函数,比较f(3)、f(2)、f(根
已知函数y=f(x)是偶函数,且在[0,+∞)上单调递减,若f(a)<f(2),求实数a的取值范围
定义在R函数y=f(x)为偶函数,且在[0,正无穷大)上单调递减,是比较f(1),f(-2),f(3)的大小