P(x0,y0),抛物线y=ax^2,求P到抛物线切线方程(两条)
如图,设抛物线C:x^2=4y的焦点为F,P(x0,y0)为抛物线上的任一点(x不等于0)过P点的切线交y轴于Q点.
求大于2的质数P,使得抛物线y=(x-1/p)(x-p/2)上有点(x0,y0)满足x0为正整数,y0为质数的平方.
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
已知圆c:x^2+y^2=r^2和圆外一点P(x0,y0),过P作圆的两条切线,切点为A,B,求过A,B两点的直线方程
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)
已知抛物线x^2=2py,在点(1,1/2p)和(-1,1/2p)处的两条切线互相垂直,求抛物线方程.
过抛物线y=x^2上一点P(x0,y0)作两条倾斜角互补的直线,分别交抛物线于
抛物线y^2=2px(p>0)的弦PQ的中点为M(x0,y0)(y0≠0)求直线PQ的斜率
设抛物线C的方程为x2=4y,M(x0,y0)为直线l:y=-m(m>0)上任意一点,过点M作抛物线C的两条切线MA,M
,抛物线y^2=2px,P(x0,y0)是抛物线上一定点.M N 分别是抛物线上两动点,且PM垂直PN,求MN所在直线过
已知抛物线方程x^2=4y,过点P(t,-4)作抛物线的两条切线PA,PB,切点分别为A,B.10
过y^2=2px(x>0)上一点P(x0,y0)(y0>0)作两直线分别交抛物线于A(X1,Y1)B(X2,Y2)1)求