数列中的拆项公式1/(ab)=1/[n(n+1)]=1/[(2n-1)(2n+1)]=1/[n(n+1)(n+2)]=要
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 21:41:07
数列中的拆项公式
1/(ab)=
1/[n(n+1)]=
1/[(2n-1)(2n+1)]=
1/[n(n+1)(n+2)]=
要详细地计算过程
答案我有,我要详细地计算过程,请大家帮忙
1/(ab)=
1/[n(n+1)]=
1/[(2n-1)(2n+1)]=
1/[n(n+1)(n+2)]=
要详细地计算过程
答案我有,我要详细地计算过程,请大家帮忙
因为 1/a - 1/b = (b-a)/(ab)
所以 1/(ab)= (1/a - 1/b)/(b-a) = (1/a - 1/b)*(1/(b-a))
a=n,b=n+1时:
1/(n(n+1))= 1/n - 1/(n+1)
a=2n-1,b=2n+1时:
1/[(2n-1)(2n+1)] = 1/2 * [1/(2n-1) - 1/(2n+1)]
1/[n(n+1)(n+2)]可以拆成
X/[n(n+1)] - Y/[(n+1)(n+2)]
用待定系数法算出 X=Y=0.5
如果是为了数列求和就不用再拆了,因为A[n]减去的正好是A[n+1]加的.
要拆的话
1/[n(n+1)(n+2)]=0.5*{1/[n(n+1)]-1/[(n+1)(n+2)]}=0.5[1/n-1/(n+1)-1/(n+1)+1/(n+2)]=0.5[1/n -2/(n+1) +1/(n+2)]
所以 1/(ab)= (1/a - 1/b)/(b-a) = (1/a - 1/b)*(1/(b-a))
a=n,b=n+1时:
1/(n(n+1))= 1/n - 1/(n+1)
a=2n-1,b=2n+1时:
1/[(2n-1)(2n+1)] = 1/2 * [1/(2n-1) - 1/(2n+1)]
1/[n(n+1)(n+2)]可以拆成
X/[n(n+1)] - Y/[(n+1)(n+2)]
用待定系数法算出 X=Y=0.5
如果是为了数列求和就不用再拆了,因为A[n]减去的正好是A[n+1]加的.
要拆的话
1/[n(n+1)(n+2)]=0.5*{1/[n(n+1)]-1/[(n+1)(n+2)]}=0.5[1/n-1/(n+1)-1/(n+1)+1/(n+2)]=0.5[1/n -2/(n+1) +1/(n+2)]
求教,N^0+N^1+N^2+N^3.N^n=?公式是什么?(N≠n且N,n都属于自然数)
Sn=n(n+2)(n+4)的分项等于1/6[n(n+2)(n+4)(n+5)-(n-1)n(n+2)(n+4)]吗?
(n+1)^n-(n-1)^n=?
n(n+1)(n+2)数列求和
数列a(n)=n (n+1)(n+2)(n+3), 求S(n)怎么用高中数列原理解答?
已知数列 {a(n)} 的通项公式为a(n)=1/(n²+2n),求数列 {a(n)}前n项和
阶乘(2n-1)!=(2n)!/(2^n*n!
1 + (n + 1) + n*(n + 1) + n*n + (n + 1) + 1 = 2n^2 + 3n + 3
2^n/n*(n+1)
求数列an=n(n+1)(2n+1)的前n项和.
数列{a n}中 ,已知a的第n项=(n^2+n-1)/3
证明(1+2/n)^n>5-2/n(n属于N+,n>=3)