作业帮 > 数学 > 作业

二项式展开式中最大系数、最大项的问题

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 21:11:17
二项式展开式中最大系数、最大项的问题
我知道二项式展开式中最大二项式系数怎么求,但我不太了解为什么比前后两项系数大的系数就是最大系数?
我还不太明白展开式中最大项是怎么求的?注意!是最大项!
我问的是展开式中的“系数”,不是“二项式系数”!最大项就是把整项都算进去的最大的项!
想知道算法和其原因
老师说用比前后项都大的算法列式算出最大系数和最大项,这是为什么?如果算出来由多个极值怎么办?
二项式展开式中最大系数、最大项的问题
最大二项式系数就是求
C0n,C1n,……,Cnn中的最大的
而这个数列是先增大后减小的
所以最大的一个在中间,
如果n是奇数,最大的就是最中间一个
如果n是偶数,最大的就是最中间两个
展开式最大项是二项式系数还要乘以二项式中本身的数字.
这就要视题目而言,做一些比较
具体地说比如(a+b)^n展开,其中a,b是两个数字.
因为展开式是按照a的降幂排列,b的升幂排列,所以先看a和b的大小.
如果a大,那么最大项肯定在前一半,如果b大,就在后一半.
另外,如果是(a-b)^n的话,因为偶数项都是负的,所以只在奇数项里求就行了.
还是那句话,求最大项没有什么通法,还是得照上面的原则做一些比较.
不过一般能在题里出的都不会太麻烦.因为现在考试对计算能力的要求已经大大降低了.所以不用害怕此类题目.
再补充:
简单的说:二项式展开式的每一项,其实就相当于两个数列的对应乘积.一个是二项式系数的数列,即C0n,C1n,C2n……Cnn,这个数列是对称的,先增后减.另一个是上面的a和b的幂的乘积.这个数列是单调的,如果a大单调递减,如果b大单调递增(前提是b是正的).
你所问的问题其实就相当于:一个单调数列与一个先增大后减小,有一个最大值的数列,对应相乘,结果会不会出现两个以上的最大值.
我想你也能想到了,答案是:不可能!
一个单调数列与一个先增大后减小的数列对应相乘,结果还是先增大,后减小.改变的只有最大值出现的位置.如果单调数列是增的,最大值会前移;单调数列是减的,最大值会后移.甚至有可能出现在第一个或者最后一个,但绝不会增加.
不知道你听明白了没有.