数列归纳法3/(1^2*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+n^2(n+1)^2/2n+1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 21:04:59
数列归纳法3/(1^2*2^2)+5/(2^2*3^2)+7/(3^2*4^2)+...+n^2(n+1)^2/2n+1=1-1/(n+1)^2
证:
n=1时,3/(1²×2²)=3/4 1- 1/(1+1)²=1-1/4=3/4
3/(1²×2²)=1- 1/(1+1)²,等式成立.
假设当n=k(k∈N+,k≥1)时,等式成立,即
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2k+1)/[k²(k+1)²]=1- 1/(k+1)²
则当n=k+1时,
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2k+1)/[k²(k+1)²]+[2(k+1)+1]/[(k+1)²(k+1+1)²]
=1- 1/(k+1)² +(2k+3)/[(k+1)²(k+2)²]
=1-[(k+2)²-(2k+3)]/[(k+1)²(k+2)²]
=1-(k²+4k+4-2k-3)/[(k+1)²(k+2)²]
=1-(k²+2k+1)/[(k+1)²(k+2)²]
=1- (k+1)²/[(k+1)²(k+1+1)²]
=1- 1/[(k+1)+1]²,等式同样成立.
k为任意正整数,因此等式对于任意正整数n恒成立.
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2n+1)/[n²(n+1)²]=1- 1/(n+1)²
n=1时,3/(1²×2²)=3/4 1- 1/(1+1)²=1-1/4=3/4
3/(1²×2²)=1- 1/(1+1)²,等式成立.
假设当n=k(k∈N+,k≥1)时,等式成立,即
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2k+1)/[k²(k+1)²]=1- 1/(k+1)²
则当n=k+1时,
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2k+1)/[k²(k+1)²]+[2(k+1)+1]/[(k+1)²(k+1+1)²]
=1- 1/(k+1)² +(2k+3)/[(k+1)²(k+2)²]
=1-[(k+2)²-(2k+3)]/[(k+1)²(k+2)²]
=1-(k²+4k+4-2k-3)/[(k+1)²(k+2)²]
=1-(k²+2k+1)/[(k+1)²(k+2)²]
=1- (k+1)²/[(k+1)²(k+1+1)²]
=1- 1/[(k+1)+1]²,等式同样成立.
k为任意正整数,因此等式对于任意正整数n恒成立.
3/(1²×2²)+5/(2²×3²)+7/(3²×4²)+...+(2n+1)/[n²(n+1)²]=1- 1/(n+1)²
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
设f(n)=1+1/2+1/3+```1/n,用数列归纳法证明n+f(1)+```f(n-1)=nf(n),(n大于等于
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
用数学归纳法证明1+4+7+...+(3n-2)=[n(3n-1)]/2
用归纳法证明n+(n+1)+(n+2)...+2n=3n(n+1)/2成立
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N
用数学归纳法证明恒等式:1+2+3+...+n^2 = (n^4+n^2)/2
用数学归纳法证明3^2+5^2+.+(2n+1)^2=n/3()4n^+12n+11)
用数学归纳法证明:1-3+5-7+...+(-1)^N-1(2N-1)=(-1)^N-1*N
用归纳法定理证明3^(4n+2)+5^(2n+1)能被14整除(n属于N*)