定义在(-1,1)上的函数f(x)满足:对任意x,y(-1,1),都有f(x)+f(y)=f[(x+y)/(1+xy)]
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:51:30
定义在(-1,1)上的函数f(x)满足:对任意x,y(-1,1),都有f(x)+f(y)=f[(x+y)/(1+xy)].求证:函数f(x)是奇函数.
由题有:对任意x,y(-1,1),都有f(x)+f(y)=f[(x+y)/(1+xy)].
取x=y=0;
f(0)+f(0)=f[(0)/(1+0)]=f(0)
因此f(0)=0,
且定义域(-1,1)关于原点对称.
又:
令y=-x代入f(x)+f(y)=f[(x+y)/(1+xy)].
f(x)+f(-x)
=f[(x-x)/(1-x^2)]--------1式
因为x属于(-1,1),所以x^2不为1,
1式为;f(x)+f(-x)=f(0)=0;
因此f(-x)=-f(x)
综上,函数f(x)是奇函数.
证毕!
取x=y=0;
f(0)+f(0)=f[(0)/(1+0)]=f(0)
因此f(0)=0,
且定义域(-1,1)关于原点对称.
又:
令y=-x代入f(x)+f(y)=f[(x+y)/(1+xy)].
f(x)+f(-x)
=f[(x-x)/(1-x^2)]--------1式
因为x属于(-1,1),所以x^2不为1,
1式为;f(x)+f(-x)=f(0)=0;
因此f(-x)=-f(x)
综上,函数f(x)是奇函数.
证毕!
已知定义在R上的函数f(x)满足:(1)对任意的x,y属于R,都有f(xy)=f(x)+f(y);
定义在(-1,1)上的函数F(x)满足:对任意x,y属于(-1,1),都有f(x)+f(y)=f[(x+y)\(1+xy
定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f((x+y)/(1+xy
设函数y=f(x)是定义在R上的函数.对任意正数x,y都有f(xy)=f(x)+f(y);当x大于1时,f(x)小于0;
定义在(-1,1)上的函数f(x)满足:对任意x,y属于(-1,1),都有f(x)+f(y)=f(x+y1+xy).
定义在(-1,1)上的函数F(X)满足:对任意X,Y属于(-1,1),都有F(X)加F(Y)等于f(X+Y除以(1+XY
已知函数f(x)是定义在R上的减函数,且对任意实数x,y都满足f(x+y)=f(x)+f(y),f(1)=1.若f(X)
定义在(-1,1)的函数f(x)满足 1、对任意x,y属于(-1,1)都有f(x)+f(y)=f((x+y)/(1+xy
已知定义在R+上的函数f(x)同时满足下列三个条件:①f(3)=-1;②对任意x、y∈R+都有f(xy)=f(x)+f(
定义在R+上的函数f(x)满足:1.对任意x,y∈R+,都有f(xy)=f(x)+f(y) 2.当x>1时,f
定义在(-1,1)上的函数f(x)满足:对任意x,y属于(-1,1),都有f(x)+f(y)=f((x+y)/(1+xy
定义在(1,-1)上的函数f(x)满足:①对任意x,y∈(1,-1),都有f(x)+f(y)=f(1+xy分之x+y)