已知等差数列{an}的首项为1,公差为2,若a1a2-a2a3+a3a4-a4a5+…-a2na2n+1≥t•n2对n∈
已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n+1)
已知数列an为首项a1≠0,公差为d≠0的等差数列,求Sn=1/a1a2+1/a2a3+……+1/ana(n-1)
an是首项为3,公差,公差为2的等差数列,则lim(1/a1a2+1/a2a3+……+1/a(n-1)an)=
已知an=2n(n∈N*),则a1a2+a2a3+a3a4+……+anan+1=
已知数列{an}的前n项和为Sn=1/2n^2+1/2n.设Tn=1/a1a2+1/a2a3+1/a3a4+……+1/a
已知数列{an},若1/a1a2+1/a2a3+…+1/anan-1=n/anan+1,求证{an}为等差数列.
已知等差数列an前n项和为Sn,Sn=n^2,求和1/(a1a2)+1/(a2a3)+.+1/[(an-1an] (n≥
已知等差数列公差为d,1/a1a2+1/a2a3+…+1/anan+1可化简为
已知数列an的前n项和Sn=2n^2+n,则lim[1/a1a2+1/a2a3+1/a3a4+...+1/anan+1]
已知数列an的首项a1不等于0,公差d不等于0,的等差数列,求Sn=1./a1a2+1/a2a3+.+1/ana(n+1
已知数列{an}的前n项和Sn=+2n,Tn=1/(a1a2)+1/(a2a3)+1/(a3a4)+...+1/(ana
已知数列{an}是等比数列,a2=2,a5=6,则a1a2+a2a3+a3a4+...+ana(n+1)=