已知函数f(t)=log2底t,t属于【√2,8】,对于f(t)值域内的所有实数m,不等式x^2+(m-4)x+4-2m
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 05:56:56
已知函数f(t)=log2底t,t属于【√2,8】,对于f(t)值域内的所有实数m,不等式x^2+(m-4)x+4-2m大于0恒成立,则实数x的取值范围是
已知函数f(t)=log2(t),t属于【√2,8】,对于f(t)值域内的所有实数m,不等式x^2+(m-4)x+4-2m大于0恒成立,则实数x的取值范围是
已知函数f(t)=log2(t),t属于【√2,8】,对于f(t)值域内的所有实数m,不等式x^2+(m-4)x+4-2m大于0恒成立,则实数x的取值范围是
(1) f(x)=x+x³单调递增
证明可用定义或导数
若导数:f(x)=x+x³,
则:f’(x)=1+3x²,
∴ f’(x)恒大于0
故 单调递增
若定义:任取x1、x2∈R,且x10
得f(x2)-f(x1)>0
故f(x)=x+x³单调递增
(2)∵f(x)=x+x³
∴f(x)为奇函数
又a+b>0,f(x)单调递增,
故f(a)+f(b)>f(a)+f(-a)=0
即f(a)+f(b)>0
证明可用定义或导数
若导数:f(x)=x+x³,
则:f’(x)=1+3x²,
∴ f’(x)恒大于0
故 单调递增
若定义:任取x1、x2∈R,且x10
得f(x2)-f(x1)>0
故f(x)=x+x³单调递增
(2)∵f(x)=x+x³
∴f(x)为奇函数
又a+b>0,f(x)单调递增,
故f(a)+f(b)>f(a)+f(-a)=0
即f(a)+f(b)>0
已知函数f(t)=log2底t,t属于【√2,8】,在函数值域G内,不等式-x^2+2mx-m^2+2m小于等于1恒成立
已知函数f(x)=2x次方+x²,x∈【4,5】对于f(x)值域内的所有实数m,t²+mt+4>2m
2x+m已知函数f(t)=t+1/t-3/2,t∈[1/2,2](1)求f(t)的值域g,(2)若对于g内的说有实数x,
已知函数f(x)=x的平方+2x+1,若存在实数t,当x属于[1,m]时,f(x+t)
已知函数F(X)=X^2+2X+1,若存在实数t,当X属于[1,M]时,F(X+T)小于等于X恒成立,则M的最大植为
已知函数f(x)=log2(2^x+1-2t)的值域为R,则实数t的取值范围是()
已知函数f(x)=x^2+2x+1,若存在实数t,当x属于[1,m]时,f(x+t)
函数值域的已知函数f(x)=-2x^4+3x^2-1,x属于R不等式f(x)小于等于t(x^2+1)总成立,求实数t的范
已知f(x)=x²+2x+1,若存在实数t,当x属于【1,m】时,f(x+t)≤x恒成立,则实数m的最大值是?
已知函数f(x)=x^2+2x,若存在实数t,当x属于[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为](求高
已知二次函数f(x)=1/4x方+1/2x+1/4,求最大的实数m,使得存在实数t,只要当x属于【1,m】时,就有f(x
已知函数f(x)=x^3+3x 对于所有t属于R f(t^2-t)+f(3t^2-k)>0 则实数K的取值范围是