证明恒等式2arccotx+arccos[2x/(1+x^2)]=∏/2,x>=1
证明恒等式:arcsin x+arccos x=π/2(-1≦x≦1)
证明恒等式arctanx+arccotx=π/2 , f(x) = arctanx+arccotx, 则有f'(x) =
arctanx+arccotx=π/2,(-∞<x<∞) 怎么证明恒等式成立?
证明恒等式:arctanx+arccotx=ㅠ/2 x属于负无穷大到正无穷大
证明恒等式arctanx+arccotx=π/2
arccos(2x-1)
证明恒等式||x-2|-1|=|x-3|-|x-2|+|x-1|-1
证明arctanx-1/2arccos(2x/(1+2x^2))=Л/4
证明恒等式 arctgx+arctg(1/x)=π/2 x≠0
证明恒等式:arctanx+arctan1/x=π/2(x>0)
证明恒等式arctanx—1/2arcos(2x/1+x^2)=π/4 (x≥1)
y=a^x+(√1-a^2x)arccos(a^x),求dy