用定积分定义求极限,n趋向无穷 1/(根号(4n^2-1))+1/(根号(4n^2-2^2))+…+1/(根
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 08:32:32
用定积分定义求极限,n趋向无穷 1/(根号(4n^2-1))+1/(根号(4n^2-2^2))+…+1/(根
用定积分定义求极限,n趋向无穷
1/(根号(4n^2-1))+1/(根号(4n^2-2^2))+…+1/(根号(4n^2-n^2))
用定积分定义求极限,n趋向无穷
1/(根号(4n^2-1))+1/(根号(4n^2-2^2))+…+1/(根号(4n^2-n^2))
1/(√(4n^2-1))+1/(√(4n^2-2^2))+…+1/(√(4n^2-n^2))
=(1/n)[1/(√(4-1/n^2))+1/(√(4-2^2/n^2))+…+1/(√(4-n^2/n^2))
考虑函数f(x)=1/√(4-x^2),定义区间[0,1],分区间n等分,取右端点:
lim(1/n)[1/(√(4-1/n^2))+1/(√(4-2^2/n^2))+…+1/(√(4-n^2/n^2))
=∫(0,1)1/√(4-x^2)dx
=arcsin(x/2)|(0,1)
=π/6
=(1/n)[1/(√(4-1/n^2))+1/(√(4-2^2/n^2))+…+1/(√(4-n^2/n^2))
考虑函数f(x)=1/√(4-x^2),定义区间[0,1],分区间n等分,取右端点:
lim(1/n)[1/(√(4-1/n^2))+1/(√(4-2^2/n^2))+…+1/(√(4-n^2/n^2))
=∫(0,1)1/√(4-x^2)dx
=arcsin(x/2)|(0,1)
=π/6
用定积分定义求极限,n趋向无穷 1/(根号(4n^2-1))+1/(根号(4n^2-2^2))+…+1/(根
用定积分计算序列极限当n趋向无穷时的极限1/(n+根号1)+1/(n+根号2)+.+1/(n+根号n)用定积分,不要用夹
微积分求极限 n趋向于无穷 (根号(n^4+n+1)-n^2)(3n+4) 为什么是1.5
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)
计算数列极限,当N趋向于无穷时,根号下(N^2+4N+5)-(N-1)的极限
极限n趋向正无穷,求解定积分,lim(n趋向于无穷)定积分(0到1)x∧n/1+x∧2n
用定义证明下列极限n趋向无穷,(n方-2)除以2n方-1=1/2n趋向无穷,根号下n+1减根号下n=0
n次根号[1+x^(2n)]的极限(n趋向正无穷)
求极限n趋向于无穷 [(√n+2)-(√n+1)]√n Ps:是根号下的(n+2) 根号下的(n+1)
用定积分定义求极限:limn趋近无穷【(1/n+1)+(1/n+2)+…+(1/n+n)】.
求极限 lim(n无穷)n【(根号(n^2+1)-根号(n^2-1)】