设数列{an}的前n项和为Sn,已知ban-2^n=(b-1)Sn.
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 00:34:52
设数列{an}的前n项和为Sn,已知ban-2^n=(b-1)Sn.
(1)证明:当b=2时,{an-n.2^n-1}是等比数列;(2)求{an}的通项公式
(1)证明:当b=2时,{an-n.2^n-1}是等比数列;(2)求{an}的通项公式
an-2^n=(b-1)Sn
ba(n-1)-2^(n-1)=(b-1)Sn-1
相减得到:
b(an-a(n-1))-2^n+2^(n-1)=(b-1)an
整理:
an=ba(n-1)+2^(n-1)
b=2时,
an=2a(n-1)+2^(n-1)
an-n*2^(n-1)
=2a(n-1)+2^(n-1) -n*2^(n-1)
=2a(n-1)-(n-1)*2^(n-1)
=2*[a(n-1)-(n-1)*2^(n-2)]
所以:(an-n*2^n-1)是等比数列.
公比为2
ba(n-1)-2^(n-1)=(b-1)Sn-1
相减得到:
b(an-a(n-1))-2^n+2^(n-1)=(b-1)an
整理:
an=ba(n-1)+2^(n-1)
b=2时,
an=2a(n-1)+2^(n-1)
an-n*2^(n-1)
=2a(n-1)+2^(n-1) -n*2^(n-1)
=2a(n-1)-(n-1)*2^(n-1)
=2*[a(n-1)-(n-1)*2^(n-2)]
所以:(an-n*2^n-1)是等比数列.
公比为2
设 数列{an}的前n项和为Sn,已知b*an - 2^n=(b-1)Sn
已知数列{an}的前n项和为Sn,且2Sn=2-(2n-1)an(n属于N*)(1)设bn=(2n+1)Sn,求数列{b
设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2
已知数列{an}的通项公式an=log2[(n+1)/(n+2)](n∈N),设其前n项的和为Sn,则使Sn
设数列{an}的前N项和为Sn,已知1/Sn+1/S2+1/S3+.+1/Sn=n/(n+1),求Sn
设数列{an}的前n项和为Sn,且Sn=2^n-1.
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1,(n为下标,n+1为上标),求通项公式?
已知数列an的首项a1=5,前n项和为Sn,且S(n+1)=2Sn+n+5(n∈N*),求数列{an}的前n项和Sn,设
设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
设数列{an}的前n项和为Sn,已知首项a1=3,且Sn+1+Sn=2an+1,试求此数列的通项公式an及前n项和Sn