微积分中的二重积分就(2)(5) 两题
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:10:32
微积分中的二重积分
就(2)(5) 两题
就(2)(5) 两题
1.先对x积分,积分区域为:0《y《1,0《x《y
∫∫e^(-y^2)dxdy=∫(0,1)e^(-y^2)dy∫(0,y)dx
=∫(0,1)ye^(-y^2)dy=(-1/2)e^(-y^2)|(0,1)=(1-1/e)
2.用柱面坐标:积分区域为 r《2sinθ,0《θ《π
∫∫(x^2+y^2)dxdy=∫(0,π)dθ∫(0,2sinθ)r^3dr
=4∫(0,π)(sinθ)^4dθ=8∫(0,π/2)(sinθ)^4dθ=8*(3/4)(1/2)(π/2)=3π/2
3.分D为两部分,D1:^2+y^2《4,D2:
∫∫e^(-y^2)dxdy=∫(0,1)e^(-y^2)dy∫(0,y)dx
=∫(0,1)ye^(-y^2)dy=(-1/2)e^(-y^2)|(0,1)=(1-1/e)
2.用柱面坐标:积分区域为 r《2sinθ,0《θ《π
∫∫(x^2+y^2)dxdy=∫(0,π)dθ∫(0,2sinθ)r^3dr
=4∫(0,π)(sinθ)^4dθ=8∫(0,π/2)(sinθ)^4dθ=8*(3/4)(1/2)(π/2)=3π/2
3.分D为两部分,D1:^2+y^2《4,D2: