(2012•朝阳区一模)阅读下面材料:
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/20 06:58:22
(2012•朝阳区一模)阅读下面材料:
问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.
小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.
(1)请你回答:图中BD的长为
问题:如图①,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.
小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题得到解决.
(1)请你回答:图中BD的长为
2
2 |
(1)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC,
∴∠DCA=∠ECA,DC=EC,∠DAC=∠CAE,
∵∠BAD=∠C=2∠DAC=45°,∠DAE=∠DAC+∠CAE=2∠DAC,
∴∠ECD=∠ECA+∠DCA=90°,∠BAD=∠DAE,
∴DE=
DC2+EC2=2
2,
∵∠ADB=∠DAC+∠ACD=22.5°+45°=67.5°,
∴∠ADE=180°-∠ADB-∠EDC=180°-67.5°-45°=67.5°,
∴∠ADB=∠ADE,
在△BAD和△EAD中,
∵
∠BAD=∠EAD
AD=AD
∠BDA=∠EDA,
∴△BAD≌△EAD(ASA),
∴BD=DE=2
2;…(2分)
(2)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC,
∴∠DAC=∠EAC,∠DCA=∠ECA,DC=EC,
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°,
∴△CDE为等边三角形,…(3分)
∴DC=DE,
在AE上截取AF=AB,连接DF,
∵AD是公共边,
∴△ABD≌△AFD,
∴BD=DF,
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED=75°,∠ABD=105°,
∴∠AFD=105°,
∴∠DFE=75°,
∴∠DFE=∠DEF,
∴DF=DE,
∴BD=DC=2,…(4分)
作BG⊥AD于点G,
∴在Rt△BDG中,BG=BD•sin∠ADB=2×
2
2=
∴△ADC≌△AEC,
∴∠DCA=∠ECA,DC=EC,∠DAC=∠CAE,
∵∠BAD=∠C=2∠DAC=45°,∠DAE=∠DAC+∠CAE=2∠DAC,
∴∠ECD=∠ECA+∠DCA=90°,∠BAD=∠DAE,
∴DE=
DC2+EC2=2
2,
∵∠ADB=∠DAC+∠ACD=22.5°+45°=67.5°,
∴∠ADE=180°-∠ADB-∠EDC=180°-67.5°-45°=67.5°,
∴∠ADB=∠ADE,
在△BAD和△EAD中,
∵
∠BAD=∠EAD
AD=AD
∠BDA=∠EDA,
∴△BAD≌△EAD(ASA),
∴BD=DE=2
2;…(2分)
(2)把△ADC沿AC翻折,得△AEC,连接DE,
∴△ADC≌△AEC,
∴∠DAC=∠EAC,∠DCA=∠ECA,DC=EC,
∵∠BAD=∠BCA=2∠DAC=30°,
∴∠BAD=∠DAE=30°,∠DCE=60°,
∴△CDE为等边三角形,…(3分)
∴DC=DE,
在AE上截取AF=AB,连接DF,
∵AD是公共边,
∴△ABD≌△AFD,
∴BD=DF,
在△ABD中,∠ADB=∠DAC+∠DCA=45°,
∴∠ADE=∠AED=75°,∠ABD=105°,
∴∠AFD=105°,
∴∠DFE=75°,
∴∠DFE=∠DEF,
∴DF=DE,
∴BD=DC=2,…(4分)
作BG⊥AD于点G,
∴在Rt△BDG中,BG=BD•sin∠ADB=2×
2
2=
(2013•朝阳区一模)阅读下面材料:小雨遇到这样一个问题:如图1,直线l1∥l2∥l3,l1与l2之间的距离是1,l2
(2010•朝阳区二模)阅读材料,回答问题.
(2012•延庆县二模)阅读下面材料:
(2012•怀柔区二模)阅读下面材料:
(2012•石景山区二模)阅读下面材料:
(2011•保定一模)先阅读下面的材料,然后解答问题:
(2012•大兴区一模)阅读下列材料:
(2013•朝阳区一模)在下列命题中,
(2014•和平区三模)阅读下面材料
(2014•西城区二模)阅读下面材料:
(2012•朝阳区一模)化学与人类生活息息相关.
(2012•朝阳区一模)某化学活动小组探究金属的反应规律.