高等数学的题目(共8小题)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 15:20:01
高等数学的题目(共8小题)
求解下列微分方程:
(1)xy`-ylny=0
(2)dy/dx+y/x=x/y
2.求该函数的偏导数:z=ln tan x/y
3.求函数的极限
4.
5.求全微分
6.
7.
哇!这么多题.给点分啊~!
xy‘-ylny=0
分离变量法
dx/x=dy/ylny
lnx+C1=lnlny
xe^C1=lny
y=Ce^x(C=e^(e^C1))
dy/dx+y/x=x/y
设u=y/x
y=ux dy=xdu+udx
xdu/dx=(1-2u^2)/u
dx/x=udu/(1-2u^2)
两边积分
lnx+C1=-ln(u^2-0.5)/4
u=sqrt(Cx^4+0.5) C=e^C1
y=xsqrt(Cx^4+0.5)
z=ln tan x/y
zx=(sec x)^2/(ytanx)
zy=-ln tan x/y^2
lim(x->0,y->0)(2-sqrt(xy+4))/xy=lim(x->0,y->0)(2-sqrt(xy+4))(2+sqrt(xy+4))/(xy(2+sqrt(xy+4)))
=lim(x->0,y->0)1/(2+sqrt(xy+4))=1/4
z=xlnxy
∂z/∂x=lnxy+1
∂^2z/∂x^2=1/x
∂^3z/∂x^2∂y=0
z=e^(-xy)sin(x+y)
∂z/∂x=-ye^(-xy)sin(x+y)+e^(-xy)cos(x+y)
∂z/∂y=-xe^(-xy)sin(x+y)+e^(-xy)cos(x+y)
dz=(-ye^(-xy)sin(x+y)+e^(-xy)cos(x+y))dx+(-xe^(-xy)sin(x+y)+e^(-xy)cos(x+y))dy
sin y+e^x-xy^2=0
两边对x求导
y'cosy+e^x-y^2-2xyy'=0
dy/dx=y'=(e^x-y^2)/(cosy-2xy)
x+2y+z-2sqrt(xyz)=0
两边对x求导
1+∂z/∂x-(yz+∂z/∂x)/sqrt(xyz)=0
∂z/∂x=(yz/sqrt(xyz)-1)/(1-y/sqrt(xyz))
xy‘-ylny=0
分离变量法
dx/x=dy/ylny
lnx+C1=lnlny
xe^C1=lny
y=Ce^x(C=e^(e^C1))
dy/dx+y/x=x/y
设u=y/x
y=ux dy=xdu+udx
xdu/dx=(1-2u^2)/u
dx/x=udu/(1-2u^2)
两边积分
lnx+C1=-ln(u^2-0.5)/4
u=sqrt(Cx^4+0.5) C=e^C1
y=xsqrt(Cx^4+0.5)
z=ln tan x/y
zx=(sec x)^2/(ytanx)
zy=-ln tan x/y^2
lim(x->0,y->0)(2-sqrt(xy+4))/xy=lim(x->0,y->0)(2-sqrt(xy+4))(2+sqrt(xy+4))/(xy(2+sqrt(xy+4)))
=lim(x->0,y->0)1/(2+sqrt(xy+4))=1/4
z=xlnxy
∂z/∂x=lnxy+1
∂^2z/∂x^2=1/x
∂^3z/∂x^2∂y=0
z=e^(-xy)sin(x+y)
∂z/∂x=-ye^(-xy)sin(x+y)+e^(-xy)cos(x+y)
∂z/∂y=-xe^(-xy)sin(x+y)+e^(-xy)cos(x+y)
dz=(-ye^(-xy)sin(x+y)+e^(-xy)cos(x+y))dx+(-xe^(-xy)sin(x+y)+e^(-xy)cos(x+y))dy
sin y+e^x-xy^2=0
两边对x求导
y'cosy+e^x-y^2-2xyy'=0
dy/dx=y'=(e^x-y^2)/(cosy-2xy)
x+2y+z-2sqrt(xyz)=0
两边对x求导
1+∂z/∂x-(yz+∂z/∂x)/sqrt(xyz)=0
∂z/∂x=(yz/sqrt(xyz)-1)/(1-y/sqrt(xyz))