定义在R上的函数f(x)=a|x-1|+b,(b≠1)若关于x的方程f(x)=x恒有解,求实数a、b应满足的条件是
为什么 定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b
定义在R上的函数Y=f(x),对任意的a,b属于R满足f(a+b)=f(a)*f(b)当x>0时有f(x)>1其中f(1
定义在R上的函数y=f(x)对任意的a,b属于R满足f(a+b)=f(a)乘f(b),当x>0 时有f(x)>1,f(1
F(X)为定义在R上的函数,且对任意X属于R都满足:B[F(X+P)+F(X)]=A[1-F(X)+F(X+P)],这里
定义在R上的函数f(x)满足f(x)=0,f(x)+f(1-x)=1,f(x/5)=f(x)/2,且当0≤a<b≤1时,
定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x
已知函数f(x )=x的平方2+(a+2)x+b满足f(-1)=-2 若方程f (x )=2x有唯一的解:求实数a,b的
已知函数f(x)=x+(a+2)x+b满足f(-1)=-2:若方程f(x)=2x有唯一的解,求实数a,b的值
定义在R上的函数f(X)有f(a+x)=f(a-x),f(b+x)=f(b-x),(a不等于b)求证f(x)是11b 2
已知函数f(x)=x+(a+2)x+b满足f(-1)=-2;若函数f(x)在区间【-2,2】上不是单调函数,求实数a的取
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
定义在R上的函数y=f(x),对任意的a,b∈R,满足f(a+b)=f(a)×f(b),当x>0时,其中f(1)=2 (