比较大小1:cos((-47/10)π)与cos((-44/9)π) 2:tan((3/2)π-1)与tan((3/2)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 13:45:00
比较大小1:cos((-47/10)π)与cos((-44/9)π) 2:tan((3/2)π-1)与tan((3/2)π+1)
cos((-47/10)π)=cos(-4π-7π/10)=cos(-7π/10)=cos7π/10
cos((-44/9)π) =cos(-4π-8π/9)=cos(-8π/9)=cos8π/9
y=cosx在区间【0,π】上是减函数
所以 cos8π/9cos((-44/9)π)
tan((3/2)π-1)=cot1>0
tan((3/2)π+1)=-cot1tan((3/2)π+1)
再问: 在问下哈,2问中老师不让用cot怎么解啊
再答: tan((3/2)π-1)=sin((3/2)π-1)/cos((3/2)π-1)=(-cos1)/(-sin1)=sin1/cos1>0 tan((3/2)π+1)=sin((3/2)π+1)/cos((3/2)π+1)=(-cos1)/sin1>0
cos((-44/9)π) =cos(-4π-8π/9)=cos(-8π/9)=cos8π/9
y=cosx在区间【0,π】上是减函数
所以 cos8π/9cos((-44/9)π)
tan((3/2)π-1)=cot1>0
tan((3/2)π+1)=-cot1tan((3/2)π+1)
再问: 在问下哈,2问中老师不让用cot怎么解啊
再答: tan((3/2)π-1)=sin((3/2)π-1)/cos((3/2)π-1)=(-cos1)/(-sin1)=sin1/cos1>0 tan((3/2)π+1)=sin((3/2)π+1)/cos((3/2)π+1)=(-cos1)/sin1>0
比较sin(π-1),cos(2π-1),tan(π+1)的大小.
化简:[sin(π+α)*cos(π-α)*tan(π-α)]/[cos(π/2+α)*tan(3π/2-α)*tan(
不等式证明1已知α、β、γ∈(0,π/2),且tanα+tanβ+tanγ=3,求证:1/(cosαcosβ)+1/(c
已知tan(π+α)=-1/3 tan(α+β)=[sin(π-2α)+4(cosα)^2]/[10(cosα)^2-s
知:tan(π+α)=-1/3,tan(α+β)=[sin2(π/2-α)+4(cosα)^2]/[10(cosα)^2
已知:tan(π+α)=-1/3,tan(α+β)=[sin2(π/2-α)+4(cosα)^2]/[10(cosα)^
已知tan(π/4+已知tan (π/4+a)=3 求 sin2a-2cos^2a-1的值
求证cos(720°+α)(2/cosα+tanα)(1/cosα-2tanα)=2cosα-3tanα
cosπ/3+tanπ/4+3tan²π/6+sinπ/2+cosπ+sin3π/2等于?.
(1+tanα)/(1-tanα)=3+2√2,求cos^2(π-α)+sin(π+α)*cos(π-α)+2sin(α
化简:(1)、tan(2π+α)tan(π+α)cos(-π-α)的3次方分之sin(-α)的平方乘以cos(π+α);
已知1+tanα/1-tanα=3+2根号2,求1.sinα 2.cosα 3.cos^2(π-α)+sin(π+α)*