将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 05:10:15
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
(1)如果正方形边长为2,M为CD边中点.求:EM的长.
(2)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;
(3)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.
(1)如果正方形边长为2,M为CD边中点.求:EM的长.
(2)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;
(3)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.
(1)先求出DE= ,,后证之.
(2)注意到△DEM∽△CMG,求出△CMG的周长等于4a,从而它与点M在CD边上的位置无关.
设DE=x,EA=y,DM=m,CM=n,则EM=y,可得方程组:x+y=2a ① y^2-x^2=m^2 ② m+n=2a ③由 ①②可求:x=a-m^2/4a=n-n^2/4a由△DEM∽△CMG得:△DEM周长/△CMG周长=x/n又由△DEM周长=m+x+y=m+2a=4a-n(4a-n)/△CMG周长=(4a-n)/4a所以△CMG周长=4a
设DE=y
三角形DEM相似于三角形MCG
DM=x,DE=y,且EA=EM,EM=2a-DE,还有一个勾股定理可以用,这样,就可以把y用x和a表示,就可以使得GC用a,x表示.
MG用a,x表示.
最后求出周长是2a.
在△EMD中,设DE为y,则EM=AE=2a-y,用勾股定理,y=(4a^2-x^2)/4a
△EMD∽△CGM,CG=4ax/(2a+x)MG=(4a^2+x^2)/(2a+x)
周长=2a-x+4ax/(2a+x)+(4a^2+x^2)/(2a+x)
=4a.所以与x无关
再问: 第一问能详细一点吗?
再答: 勾股定理啊 DM^2+DE^2=EM^2 即1^2+(2-EM)^2=EM^2 解得EM=四分之五。即1.25
(2)注意到△DEM∽△CMG,求出△CMG的周长等于4a,从而它与点M在CD边上的位置无关.
设DE=x,EA=y,DM=m,CM=n,则EM=y,可得方程组:x+y=2a ① y^2-x^2=m^2 ② m+n=2a ③由 ①②可求:x=a-m^2/4a=n-n^2/4a由△DEM∽△CMG得:△DEM周长/△CMG周长=x/n又由△DEM周长=m+x+y=m+2a=4a-n(4a-n)/△CMG周长=(4a-n)/4a所以△CMG周长=4a
设DE=y
三角形DEM相似于三角形MCG
DM=x,DE=y,且EA=EM,EM=2a-DE,还有一个勾股定理可以用,这样,就可以把y用x和a表示,就可以使得GC用a,x表示.
MG用a,x表示.
最后求出周长是2a.
在△EMD中,设DE为y,则EM=AE=2a-y,用勾股定理,y=(4a^2-x^2)/4a
△EMD∽△CGM,CG=4ax/(2a+x)MG=(4a^2+x^2)/(2a+x)
周长=2a-x+4ax/(2a+x)+(4a^2+x^2)/(2a+x)
=4a.所以与x无关
再问: 第一问能详细一点吗?
再答: 勾股定理啊 DM^2+DE^2=EM^2 即1^2+(2-EM)^2=EM^2 解得EM=四分之五。即1.25
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).
将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD与点F,边AB折叠后与边BC交与点G.
如图,将边长为1的正方形ABCD折叠,使点A落在边CD上,的点M处,折痕EF分别交AD,BC于点E,F.边AB折叠后交
如图 将边长为1的正方形ABCD折叠,使点A落在边CD上的点M处,折痕EF分别交AD、BC于点E、F,边AB折叠后交边B
已知矩形ABCD,AB=2,AD=1将纸片折叠,使顶点A于边CD上的点E重合,如果折痕FG分别与AD,AB交于点F,G,
已知矩形纸片ABCD,AB=2AD=1将纸片折叠,使顶点A与边CD上的点E重合如果折痕FG分别与CD,AB交于点F,G,
如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点
已知,矩形ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,折痕EF交AD边于E,交BC边于F,分别连接AF和C
如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E、交BC于点F,连接AF、CE.
在矩形ABCD中(AD>CD),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD于E,交BC于F,分别连接AF和C
已知长方形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边DC上的点E重合,若折痕FG分别于AD、AB交于点F
已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC