在△ABC中,AB=AC=2,∠BAC=120°,则能完全覆盖住此三角形的最小圆的面积为( )
如图,在三角形abc中,bc=3,角bac=60°,三角形abc能被圆形纸片覆盖,求最小圆半径
在三角形ABC中,AB=14,AC=13,高AD=12,求能完全覆盖三角形ABC的圆的最小半径长
1,在三角形ABC中,AB=15,AC=13,高AD=12,设能完全覆盖,三角形ABC的圆的半径为R,那么R的最小值是多
已知△ABC中,AB=AC=10,∠BAC=45°,求三角形ABC的面积
在三角形ABC中,AB=15,AC=13,高AD=12,能覆盖三角形的圆最小面积是多少?
已知,三角形ABC中,AB=AC=10,∠BAC=150°,求三角形ABC的面积
在三角形ABC中,BC=3CM,角BAC=60°,那么三角形ABC能被半径至少为?CM的圆覆盖?
如图,在△ABC中,∠BAC=150°,AB=20cm,AC=30cm,则△ABC的面积为?
如图,在三角形ABC中,AB=AC,∠BAC=120°求AB:BC的值
已知三角形ABC中,AB=AC=2,角BAC=150度,求三角形ABC的面积
在等腰三角形ABC中,AB=AC=2,∠A=150度,则三角形ABC的面积为
如图,在△ABC中,AB=AC,∠BAC=120°,D F分别为AB AC的中点DE⊥AB,GF⊥AC,