设区域D:x²+y²=2x与x轴围成的上半圆,则二重积分∫∫f(x,y)dxdy=?(用极坐标法表示
计算二重积分∫∫|y-x^2|dxdy,其中区域D={(x,y)|-1
使用极坐标计算二重积分∫∫(4-x^2-y^2)^(1/2)dxdy ,D的区域为x^2+y^2=0所围.
设区域D是x^2+y^2≤1与x^2+y^2≤2x的公共部分,试写出∫∫f(x,y)dxdy在区域D,极坐标下先对r积分
用极坐标计算二重积分∫∫[D]arctan(y/x)dxdy,其中=D:1
∫∫(y/x)^2dxdy,D为曲线y=1/x,y=x,y=2所围成的区域计算二重积分
计算二重积分∫∫D根号(4-x²-y²)dxdy,其中D为以X的平方+Y的平方=2X为边界的上半圆域
设D是由y=x,x+y=1及x=0所围成的区域,求二重积分 ∫∫dxdy
微积分二重积分问题3计算∫∫ (sinx/x)dxdy ,其中D是由直线y=x ,y=x^2所围成的区域
计算二重积分 ∫D∫(sinx/x)dxdy,其中D为由y=x,y=2x和x=1围成的平面区域
计算二重积分∫∫ln(x^2+y^2)dxdy,其中积分区域D={(x,y)/1
计算二重积分I=∫∫ x/(x²+y²)dxdy,其中D为区域x²+y²≤1,x
求积分I= ∫ ∫根号(x^2+y^2)dxdy积分区域是D,其中D由y=x与y=x^4围成.用极坐标的方法.