已知数列{an}的前n项和Sn和第n项之间满足关系:2lg ( Sn-an+1) /2=lgSn+lg(1-an) 求a
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 08:56:09
已知数列{an}的前n项和Sn和第n项之间满足关系:2lg ( Sn-an+1) /2=lgSn+lg(1-an) 求an,Sn
先设 1-an=a;
然后,原等式就可以写成:2lg(Sn+a)/2=lgSn*a;
化解等式就有:(Sn+a)(Sn+a)=4a*Sn;就有D碗话碗,就有Sn=a=1-an;
由上式得:S(n-1)=1-a(n-1);
因:an=Sn-S(n-1);所以:an=(1-an)-(1-a(n-1))=a(n-1)-an;
所以有:2an=a(n-1);
所以有:an/a(n-1)=1/2;
令n=1,得a1=1/2;
是个等比数列.接下来的就发做了.
就这样;
然后,原等式就可以写成:2lg(Sn+a)/2=lgSn*a;
化解等式就有:(Sn+a)(Sn+a)=4a*Sn;就有D碗话碗,就有Sn=a=1-an;
由上式得:S(n-1)=1-a(n-1);
因:an=Sn-S(n-1);所以:an=(1-an)-(1-a(n-1))=a(n-1)-an;
所以有:2an=a(n-1);
所以有:an/a(n-1)=1/2;
令n=1,得a1=1/2;
是个等比数列.接下来的就发做了.
就这样;
1,数列『an』的前n项和Sn与第n项an之间的关系满足2×lg【二分之(Sn-an+1)】=lgSn+lg(1-an)
已知等差数列{an}的前n项和为Sn,满足关系lg(Sn+1)=n (n∈N*).试证明数列{an}为等比数列
已知数列{an}的前n项的和满足关系lg(sn+1)=n,试证明:数列{an}是等比数列
已知正数数列an中,a1=1.前n项数列和为sn,对任意n属于N*,lgSn,lgn,lg*1/an成等差数列 (1)求
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列{An}的首项A1=3,通项An与前n项Sn之间满足2An=Sn*Sn-1(n>2).n和n-1都是下标.求{A
已知数列{an}的前n项和为Sn,且满足Sn=2an-1,n为正整数,求数列{an}的通项公式an
已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n属于正整数),求数列{an}的通项公式an
已知数列An的前n项和Sn满足An+2Sn*Sn-1=0,n大于等于2,A1=1/2,求An.
已知数列{an}的前n项和Sn满足Sn=2an+(-1)^n,n≥1,求数列{an}的通项公式
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
已知数列{an}的前N项和Sn与an之间满足a1=1,Sn=n的平方*an,求{an}