求证两线段相等
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 15:29:08
解题思路: 连接AD,由题意可判断出四边形AEPF是矩形,再根据矩形的性质可得出AE=FP,由Rt△ABC中,∠BAC=90°,AB=AC,D为BC中点可得出AD=DC,∠1=∠2=45°=∠3,再由全等三角形的判定定理可得出△ADE≌△CDF,进而可得出结论.
解题过程:
证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.
解题过程:
证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.