函数f(x)=7x^2-28x-c,g(x)=2x^3+4x^2-40x,若对任意x1,x2属于[-3,3]都有f(x1
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 20:32:33
函数f(x)=7x^2-28x-c,g(x)=2x^3+4x^2-40x,若对任意x1,x2属于[-3,3]都有f(x1)<=g(x2)成立,求实数c
f(x)=7x^2-28x-c (x-2)^2=[f(x)+c+28]/7
可见f(x)的图象是抛物线,开口向上,顶点为(2,-c-28),
f(-3)=147-c,f(3)=-c-19,函数f(x)在[-3,2)之间为减函数,在(2,3]之间为增函数.
g(x)=2x^3+4x^2-40x,g(-3)=102,g(3)=-30,
g'(x)=6x^2+8x-40=6(x-2)(x+10/3),可见当-3≤x0,g(x)为增函数.
可见两函数在[-3,3]之间的图象呈U形,要使g(x)≥f(x),只要g(-3)≥f(-3),g(3)≥f(3),g(2)≥f(2),
即102≥147-c,
-30≥-c-19
-48≥-c-28
解得c≥45.
再问: 这与我提问的相符吗?这是第1问的吧!
再答: 完全相符
可见f(x)的图象是抛物线,开口向上,顶点为(2,-c-28),
f(-3)=147-c,f(3)=-c-19,函数f(x)在[-3,2)之间为减函数,在(2,3]之间为增函数.
g(x)=2x^3+4x^2-40x,g(-3)=102,g(3)=-30,
g'(x)=6x^2+8x-40=6(x-2)(x+10/3),可见当-3≤x0,g(x)为增函数.
可见两函数在[-3,3]之间的图象呈U形,要使g(x)≥f(x),只要g(-3)≥f(-3),g(3)≥f(3),g(2)≥f(2),
即102≥147-c,
-30≥-c-19
-48≥-c-28
解得c≥45.
再问: 这与我提问的相符吗?这是第1问的吧!
再答: 完全相符
若函数f(x)=1/3x^3-a^2x满足对于任意的x1,x2属于[0,1]都有|f(x1)-f(x2)|
函数f(x),x属于R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)*f(x2),求证
设k>0,函数f(x)=x^1/3-(x+7)^2/3,g(x)=x/[e^(kx-2)],若任意x1,x2属于(0,+
函数f(x),x∈R,若对于任意实数x1,x2都有f(x1+x2)+f(x1-x2)=2f(x1).f(x2),求证f(
已知函数f(x)=ax^2+4x-2,若对任意x1,x2∈R且x1≠x2,都有f((x1+x2)/2)
函数f(x)=-(x-1)^2(x=1)满足对任意x1不等于x2,都有(f(x1)-f(x2))/x1-x2>0,求a取
函数F(X),X属于R,若对于任意实数X1,X2都有F(X1+X2)+F(X1-X2)=2F(X1)F(X2)求证F(X
已知函数f(x)=x-1/x,g(x)=1/x-x-m,若对任意x1属于【1,3】,存在x2属于【-2,-1】,使得f(
已知f(x)对任意实数x1 x2都有f(x1+x2)+f(x1-x2)=2f(x1)·f(x2) 求证f(x)为偶函数
对任意x1,x2属于R,若函数f(x)=2^x,试判断 f(x1)+f(x2)/2与f[(x1+x2)/2]的大小关系?
函数f(x),x属于R 且f(x)不恒为0 若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1
函数f(x)对任何x属于R+恒有f(x1*x2)=f(x1)+f(x2),已知f(8)=3,则f(根号2)=