1)若a/tanA=b/tanB=c/tanC,判断△ABC形状 2)若sin2A+sin2B=1且最大边c=12,求面
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 06:30:36
1)若a/tanA=b/tanB=c/tanC,判断△ABC形状 2)若sin2A+sin2B=1且最大边c=12,求面积最大值
1)由正弦定理
a/sinA=b/sinB=c/sinC=2R(三角形外接圆的半径)
a/tanA=b/tanB=c/tanC
所以,sinA/tanA=sinB/tanB=sinC/tanC
即,cosA=cosB=cosC
因为,A、B、C都是三角形的内角
所以,A=B=C
△ABC为等边三角形
2) sin²A+sin²B=1 (题目应该是平方)
则,sin²B=cos²A
因为,最长边c=12,所以A,B均为锐角
所以,sinB=cosA,B=90°-A
所以,C=90°,△ABC为直角三角形
由勾股定理,得
a²+b²=c²=144
(a-b)²≥0,a²+b²≥2ab
所以,ab≤(a²+b²)/2=72
S△ABC=ab/2≤(a²+b²)/4=36
所以,当a=b时,△ABC的面积最大值=36
a/sinA=b/sinB=c/sinC=2R(三角形外接圆的半径)
a/tanA=b/tanB=c/tanC
所以,sinA/tanA=sinB/tanB=sinC/tanC
即,cosA=cosB=cosC
因为,A、B、C都是三角形的内角
所以,A=B=C
△ABC为等边三角形
2) sin²A+sin²B=1 (题目应该是平方)
则,sin²B=cos²A
因为,最长边c=12,所以A,B均为锐角
所以,sinB=cosA,B=90°-A
所以,C=90°,△ABC为直角三角形
由勾股定理,得
a²+b²=c²=144
(a-b)²≥0,a²+b²≥2ab
所以,ab≤(a²+b²)/2=72
S△ABC=ab/2≤(a²+b²)/4=36
所以,当a=b时,△ABC的面积最大值=36
已知:A,B,C是△ABC的三个内角,求证:tanA+tanB+tanC=tanA*tanB*tanC
在斜三角形ABC中tanC/tanA+tanC/tanB=1,则(a^2+b^2)/c^2
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知tanB=1/2,tanC=1/3,且c=1.(1)求tanA
一直三角形ABC角A,B,C的对边分别是a,b,c且tanA:tanB:tanC=1:2:3 求角A 求b/c
在△ABC中,已知tanA:tanB:tanC=1:2:3,求tan(B-A)
已知角A,B,C为三角形ABC三内角,求证:tanA+tanB+tanC=tanA tanB tanC
∠A,∠B,∠C为锐角三角形ABC的三个内角且tanA,tanB,tanC为等差数列,f(x)满足f(tanc)=1/s
在三角形ABC中,a,b,c分别是角A,B,C的对边,若a2+b2=2014c2,则2tanA*tanB/tanC(ta
在△ABC中,角A,B,C所对边分别为a,b,c,且1+tanA/tanB=2c/b,求角A
在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若tanC/tanA+tanC/tanB=1,则(a2+b2)
在△ABC中,角A、B、C所对的边分别是a、b、c,若sin2B+sin2C=sin2A+sinBsinC,且(向量AC
已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且tanBtanC-√3(tanB+tanC)=1.(1)求