可逆矩阵可以由一组矩阵线性表示么
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 05:36:14
可逆矩阵可以由一组矩阵线性表示么
如题,比如说A是R(n*n)的可逆矩阵,则,A的逆可由E,A,A^2.A^(n-1)线性表示么,求老师们解答
如题,比如说A是R(n*n)的可逆矩阵,则,A的逆可由E,A,A^2.A^(n-1)线性表示么,求老师们解答
1.
必然存在
因为可逆,所以对于任意A的特征值λ都不等于0,不然不可逆
2.
所以可以假设A有n个非零特征值为λ1,λ2,...,λn (可以有重根)
我们只需选择n+1个常数an≠0,a(n-1),a(n-2),...,a0
使得λ1,λ2,...,λn是n次多项式
anx^n+a(n-1)x^(n-1)+...+a1x+a0
的n个根即可
例如(x-λ1)(x-λ2)...(x-λn)
3.
又由于韦达定理,
(-1)^n (a0/an)=λ1*λ2*...*λn≠0,因为没有零根
所以a0≠0
那么对于上述多项式除以-a0
再令bn=an/(-a0)
就可以得到
λ1,λ2,...,λn是多项式
f(x)=bnx^n+b(n-1)x^(n-1)+...+b1x-1
的n个根
4.
然后因为A可逆,所以具有完全向量系
所以对于对应的特征向量x=x1,x2,...,xn其中的xi有
f(A)xi
=[bnA^n+b(n-1)A^(n-1)+...+b1A-E]xi
利用(A^j)xi=(λi^j)xi得到
=[bnλi^n+b(n-1)λi^(n-1)+...+b1λi-1]xi
=0
对于i=1,2,...,n都成立,而{xi}线性无关
所以f(A)=bnA^n+b(n-1)A^(n-1)+...+b1A-E = 0矩阵
所以
bnA^n+b(n-1)A^(n-1)+...+b1A=E
A[bnA^(n-1)+b(n-1)A^(n-2)+...+b1E]=E
并且[bnA^(n-1)+b(n-1)A^(n-2)+...+b1E]A=E
所以A^(-1)=bnA^(n-1)+b(n-1)A^(n-2)+...+b1E
证毕
再问: 您好,谢谢您的回答,不过第四步可以再说的详细点么,我现在是大一下学期学生,专业是数学,什么是完全向量系,还有,这个题目的第二问是给你一个三阶方阵,并利用该结果求出此方阵的逆矩阵,我该如何求呢, 我想了一天没有思路,求解答
再答: 第四步你哪不明白 完全特征向量系就是指A有n个线性无关的特征向量,是可逆的充要条件 然后A^n xi=A^(n-1)(Axi)=A^(n-1)(λi xi)=λi A^(n-1)xi=...=λi^n xi 这里λi,xi是对应的特征值和特征向量
必然存在
因为可逆,所以对于任意A的特征值λ都不等于0,不然不可逆
2.
所以可以假设A有n个非零特征值为λ1,λ2,...,λn (可以有重根)
我们只需选择n+1个常数an≠0,a(n-1),a(n-2),...,a0
使得λ1,λ2,...,λn是n次多项式
anx^n+a(n-1)x^(n-1)+...+a1x+a0
的n个根即可
例如(x-λ1)(x-λ2)...(x-λn)
3.
又由于韦达定理,
(-1)^n (a0/an)=λ1*λ2*...*λn≠0,因为没有零根
所以a0≠0
那么对于上述多项式除以-a0
再令bn=an/(-a0)
就可以得到
λ1,λ2,...,λn是多项式
f(x)=bnx^n+b(n-1)x^(n-1)+...+b1x-1
的n个根
4.
然后因为A可逆,所以具有完全向量系
所以对于对应的特征向量x=x1,x2,...,xn其中的xi有
f(A)xi
=[bnA^n+b(n-1)A^(n-1)+...+b1A-E]xi
利用(A^j)xi=(λi^j)xi得到
=[bnλi^n+b(n-1)λi^(n-1)+...+b1λi-1]xi
=0
对于i=1,2,...,n都成立,而{xi}线性无关
所以f(A)=bnA^n+b(n-1)A^(n-1)+...+b1A-E = 0矩阵
所以
bnA^n+b(n-1)A^(n-1)+...+b1A=E
A[bnA^(n-1)+b(n-1)A^(n-2)+...+b1E]=E
并且[bnA^(n-1)+b(n-1)A^(n-2)+...+b1E]A=E
所以A^(-1)=bnA^(n-1)+b(n-1)A^(n-2)+...+b1E
证毕
再问: 您好,谢谢您的回答,不过第四步可以再说的详细点么,我现在是大一下学期学生,专业是数学,什么是完全向量系,还有,这个题目的第二问是给你一个三阶方阵,并利用该结果求出此方阵的逆矩阵,我该如何求呢, 我想了一天没有思路,求解答
再答: 第四步你哪不明白 完全特征向量系就是指A有n个线性无关的特征向量,是可逆的充要条件 然后A^n xi=A^(n-1)(Axi)=A^(n-1)(λi xi)=λi A^(n-1)xi=...=λi^n xi 这里λi,xi是对应的特征值和特征向量
求线性代数老师.ABC均为n阶矩阵,B可逆,AB=C----> C的列向量组可以由A的列向量组线性表示( C的行向量组可
怎样证明一个N阶可逆实矩阵A可由两个可逆的对称矩阵的乘积表示
A是可逆矩阵,为什么它可以表示成若干初等矩阵的乘积
求证:任何一个方阵都可以表示成两个矩阵的乘积,其中一个矩阵可逆
是不是只有可逆矩阵才可以表示成多个初等矩阵相乘?
是不是所有的可逆矩阵都可以用初等矩阵相乘来表示
全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基
将下列可逆矩阵表示成初等矩阵的乘积
可逆矩阵的构成的向量组线性无关?
矩阵A乘矩阵B等于零矩阵,矩阵A可逆,是否可以判断矩阵B为零矩阵,理由?
线性代数这样证明可以吗 矩阵 可逆
若矩阵B的列向量组能由矩阵A的列向量线性表示,则