行列式的题目试证明:n次多项式f(x)=an*x^n+an-1*x^(n-1)+...+a1*x+a0(其中an不=0)
a0+0.5a1+.+an/(n+1)=0,证明f(x)=a0+a1x+..+anx^n在(0,1)内至少有1个零根
Fi(X)是一个不超过n-2次的多项式(i=1,2...N)求证对于任意n个数a1,a2.an有行列式
已知(x+1)^n=a0+a1(x-1)+a2(x-1)^2+...+an(x-1)^n,其中n≥2,n∈N*.设bn=
(a0)+(a1)/2+.+(an)/n+1=0证明f(x)=a0+a1x+.+anx的n次方在开去间0,1内至少有一个
已知函数f(x)=(x^3-x) /3,数列{an}满足a1>=1,an+1>=f'(an+1)证明an>=(2^n)-
一个实系数方程x^n+a1*x^n-1+a2*x^n-2+.+...an=0a1,a2,a3...,an都是整数证明:如
已知函数f(X)=X/(3x+1),数列{an}满足a1=1,a(n+1)=f(an),证明数列{1/an}是等差数列
设1+(1+x)+(1+x)^2+……+(1+x)^n=a0+a1*x+a2*x^2+……an*x^n,lim[(na1
已知函数f(x)=x/(3x+1),数列{an}满足a1=1,an+1=f(an)(n∈N*),求证:数列{1/an}是
已知f(x)=3x/(x+3),数列{an}满足an=f(an-1) (n>1,a1≠0)求证①{1/an}是等差数列
已知a1=1,点(an,an+1)在函数f(x)=x的平方+2x的图像上,其中n=1,2,3,.
已知a1=2,点(an,an+1)在函数f(x)=x^2+2x的图象上,其中n=1,2,3…