已知数列{an}、{bn}满足a1=2t(t=/0),且an=2t-t^2/a(n-1)下标,bn=1/an-t.判断数
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 11:14:15
已知数列{an}、{bn}满足a1=2t(t=/0),且an=2t-t^2/a(n-1)下标,bn=1/an-t.判断数列{bn}是否为等差数列.
因为an=2t-t^2/a(n-1)所以an/t=2-t/a(n-1)
令an/t=cn,则cn=2-1/c(n-1),c1=2t/t=2
则c2=2-1/c1=2-1/2=3/2
同理c3=2-2/3=4/3
c4=2-3/4=5/4
.
.
.
观察可知cn=(n+1)/n,(为求严谨,到这里应该用数学归纳法证明一下此推论,详细过程略)
所以an=t*cn=t(n+1)/n
bn=1/an-t=[(1-t^2)n-t^2]/t(n+1),不是等差(我很纳闷为什么会问bn是不是等差,我觉得可能是题抄错了,应该是bn=1/(an-t),这样bn化简后就等于n/t,这样bn就是等差了)
对于数列的题,有的时候通项公式强行做做不出来,就需要先找规律(一般写几项后规律就比较明显),然后再证明.有的题出的就是要让你找规律,所以找规律有时很好用.
令an/t=cn,则cn=2-1/c(n-1),c1=2t/t=2
则c2=2-1/c1=2-1/2=3/2
同理c3=2-2/3=4/3
c4=2-3/4=5/4
.
.
.
观察可知cn=(n+1)/n,(为求严谨,到这里应该用数学归纳法证明一下此推论,详细过程略)
所以an=t*cn=t(n+1)/n
bn=1/an-t=[(1-t^2)n-t^2]/t(n+1),不是等差(我很纳闷为什么会问bn是不是等差,我觉得可能是题抄错了,应该是bn=1/(an-t),这样bn化简后就等于n/t,这样bn就是等差了)
对于数列的题,有的时候通项公式强行做做不出来,就需要先找规律(一般写几项后规律就比较明显),然后再证明.有的题出的就是要让你找规律,所以找规律有时很好用.
已知数列{an}满足a1=2,an=2an-1+2(n∈N*,且n≥2)若数列{bn}满足bn=log2(an+2)设T
已知数列an满足前n项和Sn=n平方+1.数列bn满足bn=2\an+1,且前n项和为Tn,设Cn=T的2n+1个数—T
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足:bn=2/(an+1),且前n项和为Tn,设Cn=T(2
已知等差数列a1=3/2,公差为1,设bn=a*2的n次方+b*an-75(a,b属于自然数),且数列{bn}的前项和T
已知数列{an}中a1=-1且(n+1)an,(n+2)an+1(是下标)成等差数列,设bn=(n+1)an-n+2求证
已知数列{an}的前n项和为Sn=n^2+1,数列{bn}满足bn=2/(an)+1,前n项和为Tn,设Cn=T(2n+
已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}
已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列
已知数列{an}和{bn}满足关系式:bn=a1+a2+a3+...+an/n(n属于N*) (1)若bn=n^2,求数
已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*
已知数列{an(n下标)}满足a1(1下标)=1,a2(2下标)=3,.求证:bn(n下标)是等差数列.
已知数列{an}满足a1=1,a2=2,an+2=(an+an+1)/2,n∈N*.令bn=an+1-an,证明{bn}