一道偏倒数题目e^z-xyz=0求az^2/axay
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 06:40:07
一道偏倒数题目
e^z-xyz=0求az^2/axay
e^z-xyz=0求az^2/axay
e^z - xyz = 0
∂(e^z)/∂x - y · ∂(xz)/∂x = 0
e^z · ∂z/∂x - y · (z · 1 + x · ∂z/∂x) = 0
e^z · ∂z/∂x - yz - xy · ∂z/∂x = 0
(e^z - xy) · ∂z/∂x = yz
∂z/∂x = yz/(e^z - xy)
= yz/(xyz - xy)
= z/(xz - x)
e^z - xyz = 0
e^z · ∂z/∂y - x · (z · 1 + y · ∂z/∂y) = 0
(e^z - xy) · ∂z/∂y = xz
∂z/∂y = xz/(e^z - xy)
= xz/(xyz - xy)
= z/(yz - y)
∂²z/∂x∂y = ∂(∂z/∂x)/∂y
= ∂[z/(xz - x)]/∂y
= [(xz - x) · ∂z/∂y - z · (x · ∂z/∂y - 0)]/(xz - x)²
= [(xz - x) · z/(yz - y) - z · (x · z/(yz - y))]/(xz - x)²
= z/(yz - y) · [(xz - x) - xz]/(xz - x)²
= z/[y(z - 1)] · (- x)/[x²(z - 1)²]
= - z/[xy(z - 1)³]
∂(e^z)/∂x - y · ∂(xz)/∂x = 0
e^z · ∂z/∂x - y · (z · 1 + x · ∂z/∂x) = 0
e^z · ∂z/∂x - yz - xy · ∂z/∂x = 0
(e^z - xy) · ∂z/∂x = yz
∂z/∂x = yz/(e^z - xy)
= yz/(xyz - xy)
= z/(xz - x)
e^z - xyz = 0
e^z · ∂z/∂y - x · (z · 1 + y · ∂z/∂y) = 0
(e^z - xy) · ∂z/∂y = xz
∂z/∂y = xz/(e^z - xy)
= xz/(xyz - xy)
= z/(yz - y)
∂²z/∂x∂y = ∂(∂z/∂x)/∂y
= ∂[z/(xz - x)]/∂y
= [(xz - x) · ∂z/∂y - z · (x · ∂z/∂y - 0)]/(xz - x)²
= [(xz - x) · z/(yz - y) - z · (x · z/(yz - y))]/(xz - x)²
= z/(yz - y) · [(xz - x) - xz]/(xz - x)²
= z/[y(z - 1)] · (- x)/[x²(z - 1)²]
= - z/[xy(z - 1)³]
设Z=f(x,x/y),f有二阶连续偏导数,求az/ax,az/ay,az/axay
设Z=f(y/x,y),f有二阶连续偏导数,求az/ax,az/ay,az/axay,
设x+2y+z-2根号下xyz=0求az/ax,az/zy
设函数z=f(x,x/y),f具有二阶连续偏导数,求az/ax,a^2z/axay
设函数z=z(x,y),由议程x^3+y^2-xyz^2=0,求az/ax,az/zy
设x/z=ln*z/y ,求求az/ax,az/ay,a²z/axay
已知方程e的z次方减去xyz等于0确定二元函数,z等于f(x,y)求ax分之az,ay分之az.
求偏倒数az/ax和az/ay已知Z=ln(x+根号x的平方+y的平方)
设函数Z=Z(X,Y) 由方程XY=e^z-z所确定的隐函数,求a^2z/axay
设函数z=f(xy,y/x)具有二阶连续偏导数,求 a^2z/axay
隐函数微分法,求高人设x^3+y^3+z^3-3xyz=0确定隐函数z=f(x,y),求az/ax,az/ay
设z=f(xy,y/x),其中f具有二阶连续偏导数,求a^2z/ax^2,a^2z/axay.