已知数列{an}满足递推公式an=2(an-1)+1,(n>=2),其中a4=15
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 19:32:46
已知数列{an}满足递推公式an=2(an-1)+1,(n>=2),其中a4=15
求数列{an}的前n项和Sn.
求数列{an}的前n项和Sn.
an=2a(n-1)+1
an+1=2a(n-1)+2=2[a(n-1)+1]
(an+1)/[a(n-1)+1]=2
所以an+1是等比数列,q=2
所以 an+1=(a1+1)*q^(n-1)
a4+1=(a1+1)*q^(4-1)
16=(a1+1)*8
a1+1=2
所以
an+1=(a1+1)*q^(n-1)=2*2^(n-1)=2^n
an=-1+2^n
Sn=-1+2^1-1+2^2+……+(-1+2^n)
=-1*n+(2^1+……+2^n)
=-n+2*(1-2^n)/(1-2)
=-n+2^(n+1)-2
an+1=2a(n-1)+2=2[a(n-1)+1]
(an+1)/[a(n-1)+1]=2
所以an+1是等比数列,q=2
所以 an+1=(a1+1)*q^(n-1)
a4+1=(a1+1)*q^(4-1)
16=(a1+1)*8
a1+1=2
所以
an+1=(a1+1)*q^(n-1)=2*2^(n-1)=2^n
an=-1+2^n
Sn=-1+2^1-1+2^2+……+(-1+2^n)
=-1*n+(2^1+……+2^n)
=-n+2*(1-2^n)/(1-2)
=-n+2^(n+1)-2
已知数列{an}满足递推关系式an=2(an-1)+1(n≥2)其中a4=15 1求a1,a2,a3 2求数列an的通项
若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+
已知数列{an} 其中a1=2 递推公式an=2(an-1)^1/2 (n>1),求通项an
已知数列(an)满足a1=1,an+1=2an/an+2(n∈N*) 求a2,a3,a4,a5 猜想数列(an)的通项公
已知递推公式求通项公式:在数列an中a1=2,an+1=an+2n-1求通项公式an
已知数列{an}满足:a1=1,且an-an-1=2n,求(1)a2,a3,a4.(2)求数列{an}的通项an
已知{an}满足a1=1,an+1=an/an+2(n属於N*) (1)求a2 a3 a4 (2)猜想数列{an}的通项
已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式;设S
已知数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N),求数列{an}的通项公式
已知数列{an}满足a1=1,an=(an-1)/3an-1+1,(n>=2,n属于N*),求数列{an}的通项公式
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an
已知数列an满足1/a-an=2根号n,且an>0.求an的通项公式