已知圆C:(x-1)的平方+(y-1)的平方=1 求过点p(8,2)与圆相切的直线方程?
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 04:10:05
已知圆C:(x-1)的平方+(y-1)的平方=1 求过点p(8,2)与圆相切的直线方程?
这道题可以用导数来解的 虽然求起来比较费劲 但绝对是计算量最小哒
把圆分成上下两部分 分别求导 其实求一个就够了 另一个直接列 y=2
然后利用切点导数为斜率列出直线方程 把8.2代入就好啦
上面一个下面一个 我的思路是先把p(8,2)带入圆的方程可以知道算出是大于1 有两条切线 我的思路对吗?还有就是对于答案中的直接看出y=2是知道的?
这道题可以用导数来解的 虽然求起来比较费劲 但绝对是计算量最小哒
把圆分成上下两部分 分别求导 其实求一个就够了 另一个直接列 y=2
然后利用切点导数为斜率列出直线方程 把8.2代入就好啦
上面一个下面一个 我的思路是先把p(8,2)带入圆的方程可以知道算出是大于1 有两条切线 我的思路对吗?还有就是对于答案中的直接看出y=2是知道的?
最常规方法:
设直线方程为y-2=k(x-8)
变为一般式 kx-y-8k+2=0
点(1,1)到直线的距离为
d=|k-1-8k+2|/√(k²+1)=1
|k-1-8k+2|=√(k²+1)
两边平方
|k-1-8k+2|²=k²+1
(1-7k)²=k²+1
1-14k+49k²=k²+1
48k²-14k=0
k=0或k=7/24
直线方程为:y=2或7x-24y-8=0
---------------------------------------------------------
你的方法:
下半圆方程 y=1-√(2x-x²)
其导数为 y'=(x-1)/√(2x-x²)=(x-1)/(1-y)
设直线与圆相切于点(m,n),则直线斜率为
k=y'=(m-1)(1-n)=(n-2)(m-8)
点(m,n)在圆上
(m-1)²+(n-1)²=1
联解求出 m=1.28,n=0.04
所以k=(1.28-1)(1-0.04)=7/24
再补充上半圆的切点(1,2),k=0
直线方程为:y=2或7x-24y-8=0
---------------------------------------------------------
我的方法:
设直线方程为y=k(x-8)+2
代入圆的方程得
(x-1)²+[k(x-8)+1]²=1
展开
x²-2x+1+k²(x-8)²+2k(x-8)+1=1
x²-2x+1+k²x²-16k²x+64k²+2kx-16k+1=1
再化成一元二次方程的标准式
(1+k²)x²-(2+16k²-2k)x+(1+64k²-16k)=0
圆与直线只有一个交点,故该方程只有一个根
判别式△=b²-4ac=0
(2+16k²-2k)²-4(1+k²)(1+64k²-16k)=0
4(8k²-k+1)²-4(64k^4-16k³+65k²-16k+1)=0
(64k^4-16(k-1)k²+(k-1)²)-(64k^4-16k³+65k²-16k+1)=0
(16k²+(k-1)²)-(65k²-16k+1)=0
(17k²-2k+1)-(65k²-16k+1)=0
48k²-14k=0
k=0或k=7/24
直线方程为:y=2或y=(7/24)x-1/3
----------------------------------------------------------
常规方法最有效快速;你的方法对于求切点坐标可能会快点;我的方法计算量大,易出错,不建议采用,不过作为一题多解,还是有点价值的^_^
设直线方程为y-2=k(x-8)
变为一般式 kx-y-8k+2=0
点(1,1)到直线的距离为
d=|k-1-8k+2|/√(k²+1)=1
|k-1-8k+2|=√(k²+1)
两边平方
|k-1-8k+2|²=k²+1
(1-7k)²=k²+1
1-14k+49k²=k²+1
48k²-14k=0
k=0或k=7/24
直线方程为:y=2或7x-24y-8=0
---------------------------------------------------------
你的方法:
下半圆方程 y=1-√(2x-x²)
其导数为 y'=(x-1)/√(2x-x²)=(x-1)/(1-y)
设直线与圆相切于点(m,n),则直线斜率为
k=y'=(m-1)(1-n)=(n-2)(m-8)
点(m,n)在圆上
(m-1)²+(n-1)²=1
联解求出 m=1.28,n=0.04
所以k=(1.28-1)(1-0.04)=7/24
再补充上半圆的切点(1,2),k=0
直线方程为:y=2或7x-24y-8=0
---------------------------------------------------------
我的方法:
设直线方程为y=k(x-8)+2
代入圆的方程得
(x-1)²+[k(x-8)+1]²=1
展开
x²-2x+1+k²(x-8)²+2k(x-8)+1=1
x²-2x+1+k²x²-16k²x+64k²+2kx-16k+1=1
再化成一元二次方程的标准式
(1+k²)x²-(2+16k²-2k)x+(1+64k²-16k)=0
圆与直线只有一个交点,故该方程只有一个根
判别式△=b²-4ac=0
(2+16k²-2k)²-4(1+k²)(1+64k²-16k)=0
4(8k²-k+1)²-4(64k^4-16k³+65k²-16k+1)=0
(64k^4-16(k-1)k²+(k-1)²)-(64k^4-16k³+65k²-16k+1)=0
(16k²+(k-1)²)-(65k²-16k+1)=0
(17k²-2k+1)-(65k²-16k+1)=0
48k²-14k=0
k=0或k=7/24
直线方程为:y=2或y=(7/24)x-1/3
----------------------------------------------------------
常规方法最有效快速;你的方法对于求切点坐标可能会快点;我的方法计算量大,易出错,不建议采用,不过作为一题多解,还是有点价值的^_^
已知直线过点(3.0),且与圆C:x平方+y平方=4相切求(1)切线的长(2)切线的方程
已知圆O:(X-2)的平方+(Y+1)的平方=1,求过点P(3,2)且与圆0相切的直线的方程!
已知圆X平方加Y平方等于4,求过点P(2,1),且与圆相切的直线的一般式方程
求过点p(1,-2)且与圆(x+1)平方+(y+3)平方=5相切的直线的方程 求过程
已知直线l过点p(2,3)且与圆(x-1)的平方+(y+2)的平方=1相切,求直线l的方程
已知圆C的方程:x的平方+y的平方=4.(1)求过点p(1,2)且与圆C相切的直线I的方程(2)直线I过点P(1,2),
已知点P(2,0),及圆C:X的平方+Y的平方—6X+4Y+4=0,当直线L过点P且与圆心距离为1时,求直线L方程.
已知点P(4,2),直线3X+4Y=0与圆C:(X-1)平方+(Y+2)平方=25交于点AB求过点P的圆的切线方程?
已知点P(4,2),直线3X+4Y=0与圆C:(X-1)平方+(Y+2)平方=25交于点AB求过点P的圆的切线方程
求过点已知P(2,3)和圆(x-3)平方2+y平方2=1相切的切线方程是
已知圆C(x-2)∧2+y∧2=1,求过点p(3,m)与圆C相切的直线方程
已知圆C的标准方程为X的平方+(Y-3)的平方=5.(1)如果过点P(1,0)的直线L与圆C有公共点求直线L的斜率K的取