作业帮 > 数学 > 作业

已知点P为等边△ABC外接圆周劣弧BC上的一点.(1)求∠BPC的度数;

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 08:55:40
已知点P为等边△ABC外接圆周劣弧BC上的一点.(1)求∠BPC的度数;
已知点P为等边△ABC外接圆周劣弧BC上的一点.
(1)求∠BPC的度数;
(2)求证:PA=PB+PC;
(3)设PA,BC交于点M,若AB=4,PC=2,求CM的长度.
第(1)(2)个问题都好做,就是第(3)个问不知怎样做?
已知点P为等边△ABC外接圆周劣弧BC上的一点.(1)求∠BPC的度数;
3)过C作CN⊥AP交AP于N,
在直角三角形PCN中,∠APC=60,PC=2,
所以PN=1,CN=√3,
在直角三角形ACN中,AC=4,
由勾股定理,得AN^2=AC^2-CN^2=16-3=13,
所以AN=√13
所以AP=AN+PN=√13+1
又∠APC=∠ACM,∠CAP是公共角
所以△ACM∽△APC
所以AC/AP=CM/PC,
即:4/AP=CM/2
代人得,
4/(√13+1)=CM/2
解得CM=(2/3)(√13-1)