作业帮 > 数学 > 作业

设a1,a2,...,a11是等差数列,且(a1的平方)+(a11的平方)≤100,求S=a1+a2+...+a11的最

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 16:25:52
设a1,a2,...,a11是等差数列,且(a1的平方)+(a11的平方)≤100,求S=a1+a2+...+a11的最大值和最小值.
设a1,a2,...,a11是等差数列,且(a1的平方)+(a11的平方)≤100,求S=a1+a2+...+a11的最大值和最小值.
设a1,a2,...,a11是等差数列,且(a1的平方)+(a11的平方)≤100,求S=a1+a2+...+a11的最
S=a1+a2+...+a11 = (a1 + a11)*11/2
a1 + a11 = 2S/11
(a1的平方)+(a11的平方)≤100
a1的平方 + 2*a1*a11 + a11的平方 - 2*a1*a11 ≤ 100
(a1 + a11)的平方 - 2*a1*a11 ≤ 100
4*(S的平方)/121 - 2*a1*a11 ≤ 100
S的平方 - 121*a1*a11/2 ≤ 3025
S的平方 ≤ 3025 + 121*a1*a11/2
- 根号下(3025 + 121*a1*a11/2) ≤ S ≤ 根号下(3025 + 121*a1*a11/2)
因此当 a1*a11 取最大时,S 取最大值 和最小值.
下面求 a1*a11 的最大值
因为 a1的平方 - 2*a1*a11 + a11的平方 ≥ 0
所以 a1*a11 ≤ (a1的平方 + a11的平方)/2 ≤ 100/2 = 50
因此 a1*a11 的最大值是 50.
当 a1*a11 取最大值 50 时
3025 + 121*a1*a11/2 = 3025 + 121 * 50 /2 = 2*55的平方
根号下(3025 + 121*a1*a11/2) = 55√2
因此 -55√2≤S≤55√2
a1 * a11 取最大值50时,
a1 = a2 = …… = a11 = ±5√2
为常数数列.公差为0.因为题目中只提到 “等差数列”.而公差为0的数列也属于等差数列,满足题目要求.这时 S = a1 + a2 + …… + a11 = ±55√2