作业帮 > 数学 > 作业

初中数学题,关于幂的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 19:24:39
初中数学题,关于幂的
初中数学题,关于幂的
幂的运算测试题
一、选择题:
1.下列计算中,错误的是( )
A.mn·m2n+1 = m3n+1 B.(−am−1)2 = a 2m−2
C.(a2b)n= a2nbn D.(−3x2)3 = −9x6
2.若xa= 3,xb = 5,则xa+b的值为( )
A.8 B.15
C.35 D.53
3.计算(c2)n•(cn+1)2等于( )
A.c4n+2  B.c
 C.c
D.c3n+4
4.与[(− 2a2)3]5的值相等的是( )
A.− 25a30
B. 215a 30
C.(− 2a2)15
D.( 2a)30
5.下列计算正确的是( )
A.(xy)3
= xy3
B.(2xy)3 = 6x3y3
C.(−3x2)3
= 27x5  D.(a2b)n
= a2nbn
6.下列各式错误的是( )
A.(23)4
= 212
B.(− 2a)3 = − 8a3
C.(2mn2)4= 16m4n8 D.(3ab)2 = 6a2b2
7.下列各式计算中,错误的是( )
A.(m6)6
= m36
B.(a4)m = (a 2m)2
C.x2n =
(−xn)2
D.x2n = (−x2)n
二、解答题:
1.已知32n+1+32n= 324,试求n的值.
2.已知 2m = 3,4n= 2,8k = 5,求 8m+2n+k的值.
3.计算:[−x2(x3)2]4
4.如果am= −5,an = 7,求a 2m+n的值.
幂的运算测试题答案:
一、选择题:
1、D
说明:mn·m2n+1 = mn+2n+1
= m3n+1,A中计算正确;(−am−1)2 = a2(m−1) = a 2m−2,B中计算正确; (a2b)n = (a2)nbn
= a2nbn,C中计算正确;(−3x2)3 = (−3)3(x2)3
= −27x6,D中计算错误;所以答案为D.
2、B
说明:因为xa = 3,xb = 5,所以xa+b = xa•xb = 3•5 = 15,答案为B.
3、A
说明:(c2)n•(cn+1)2
= c2×n•c2(n+1)
= c2n•c2n+2 = c2n+2n+2
= c4n+2,所以答案为A.
4、C
说明:[(− 2a2)3]5 = (− 2a2)3×5 = (− 2a2)15,所以答案为C.
5、D
说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3
= 8x3y3,B错;(−3x2)3 = (−3)3(x2)3
= −27x6,C错;(a2b)n
= (a2)nbn = a2nbn,D正确,答案为D.
6、C
说明:(23)4 = 23×4 = 212,A中式子正确;(− 2a)3 = (−2) 3a3
= − 8a3,B中式子正确;(3ab)2
= 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4
= 16m4n8,D中式子正确,所以答案为C.
7、D
说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−xn)2 = x2n,C计算正确;当n为偶数时,(−x2)n= (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.
二、解答题:
由32n+1+32n
= 324得3•32n+32n
= 324,
即4•32n = 324,32n = 81 = 34,
∴2n = 4,n = 2
2.解析:因为 2m = 3,4n= 2,8k = 5
所以 8m+2n+k = 8m•82n•8k = (23)m•(82)n•8k
= 23m•(43)n•8k =( 2m)3•(4n)3•8k
= 33•23•5
= 27•8•5
= 1080.
3.答案:x32
[−x2(x3)2]4 = (−x2•x3×2)4
= (−x2•x6)4= (−x2+6)4
= (−x8)4 = x8×4
= x32.
4.答案:a 2m+n = 175
因为am = −5,an = 7,所以a 2m+n = a 2m•an = (am)2•an
= (−5)2•7 = 25•7 =
175