已知点P是椭圆C:x28+y24=1上的动点,F1,F2分别为左、右焦点,O为坐标原点,则||PF1|−|PF2|||O
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:10:59
已知点P是椭圆C:
x
O为F1F2的中点
∴ OP=- PF1+ PF2 2 ∴ ||PF1|−|PF2|| |OP|= ||PF 1|−|PF 2|| |PF 1|+|PF 2| 2= ||PF 1|−|PF 2|| 2 ∵当点P在短轴端点时,|PF1|=|PF2|.||PF1|-PF2||的值最小为0 当点P在长轴端点时||PF1|-PF2||的值最大为4 ∴ ||PF1|−|PF2|| |OP|的取值范围是[0, 2] 故选D
已知椭圆C:X2/25+y2/9==1的左、右焦点分别为F1、F2,P是椭圆上的动点.(1)求|PF1|*|PF2|的最
已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=(
已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,角PF1F2等于30度,则椭圆的离心率
已知F1,F2分别是椭圆x^2/16+y^2/7=1的左、右焦点,若点P在椭圆上,且PF1*PF2=0,求||向量PF1
已知F1、F2分别为椭圆C:x24+y23=1的左、右焦点,点P为椭圆C上的动点,则△PF1F2的重心G的轨迹方程为(
椭圆c :x^2/25+y^2/9=1的左,右焦点分别是F1,F2,P为椭圆C上的一点,且PF1⊥PF2,则△PF1F2
已知F1、F2、是椭圆x2/a2+y2/b2=1的左右焦点,O为坐标原点,点P(-1,二分之根号2)在椭圆上,线段PF2
已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,角PF1F2等于30度,求椭圆离心率
已知双曲线x^2-y^2=1,F1,F2分别为焦点.点p为双曲线上的一点,PF1垂直于PF2,则PF1+PF2=
已知F1,F2分别是椭圆x2/16+y2/7的左、右焦点.若点P在椭圆上,且向量PF1*PF2=0,求向量||PF1|-
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=(
已知点P是椭圆X*X/16+Y*Y/12=1上的动点,F1,F2为椭圆两个焦点,O是坐标原点,若M是角F1PF2平分线上
|