二元一次函数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 18:46:06
请解答,谢谢
解题思路: (1)抛物线的解析式中,令x=0即得二次函数与y轴交点A的纵坐标,令y=0即得二次函数与x轴交点的横坐标. (2)根据A、C的坐标,易求得直线AC的解析式,由于等腰△EDC的腰和底不确定,因此要分成三种情况讨论: ①CD=DE,由于OD=3,OA=4,那么DA=DC=5,此时A点符合E点的要求,即此时A、E重合; ②CE=DE,根据等腰三角形三线合一的性质知:E点横坐标为点D的横坐标加上CD的一半,然后将其代入直线AC的解析式中,即可得到点E的坐标; ③CD=CE,此时CE=5,过E作EG⊥x轴于G,已求得CE、CA的长,即可通过相似三角形(△CEG∽△CAO)所得比例线段求得EG、CG的长,从而得到点E的坐标. (3)过P作x轴的垂线,交AC于Q,交x轴于H;设出点P的横坐标(设为m),根据抛物线和直线AC的解析式,即可表示出P、Q的纵坐标,从而可得到PQ的长,然后分两种情况进行讨论: ①P点在第一象限时,即0<m<8时,可根据PQ的长以及A、C的坐标,分别表示出△APQ、△CPQ的面积,它们的面积和即为△APC的面积,由此可得到S的表达式,通过配方即可得到S的取值范围;
解题过程:
.
最终答案:略
解题过程:
.
最终答案:略