无穷级数求和.为什么设x=1/3和x=根号1/3答案不同
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 19:39:09
无穷级数求和
.为什么设x=1/3和x=根号1/3答案不同
.为什么设x=1/3和x=根号1/3答案不同
(1) 1/(1-x) = ∑{0 ≤ n} x^n,求导得1/(1-x)² = ∑{1 ≤ n} n·x^(n-1) = ∑{0 ≤ n} (n+1)·x^n.
因此2/(1-x)²-1/(1-x) = ∑{0 ≤ n} (2n+1)·x^n.
即∑{0 ≤ n} (2n+1)·x^n = 2/(1-x)²-1/(1-x) = (1+x)/(1-x)².
代入x = 1/3得∑{0 ≤ n} (2n+1)/3^n = (1+1/3)/(1-1/3)² = 3.
用∑{0 ≤ n} (2n+1)·x^(2n)求是一样的.
1/(1-x²) = ∑{0 ≤ n} x^(2n),故x/(1-x²) = ∑{0 ≤ n} x^(2n+1).
求导得(1+x²)/(1-x²)² = ∑{0 ≤ n} (2n+1)·x^(2n).
代入x = 1/√3仍得3.
(2) 1/(1+x) = ∑{0 ≤ n} (-1)^n·x^n,故1/(1+x²) = ∑{0 ≤ n} (-1)^n·x^(2n).
积分得arctan(x) = ∑{0 ≤ n} (-1)^n·x^(2n+1)/(2n+1) (取x = 0可知积分常数为0).
于是arctan(x)/x = ∑{0 ≤ n} (-1)^n·x^(2n)/(2n+1).
代入x = 1/√3得∑{0 ≤ n} (-1)^n/((2n+1)·3^n) = √3·arctan(1/√3) = √3·π/6.
因此2/(1-x)²-1/(1-x) = ∑{0 ≤ n} (2n+1)·x^n.
即∑{0 ≤ n} (2n+1)·x^n = 2/(1-x)²-1/(1-x) = (1+x)/(1-x)².
代入x = 1/3得∑{0 ≤ n} (2n+1)/3^n = (1+1/3)/(1-1/3)² = 3.
用∑{0 ≤ n} (2n+1)·x^(2n)求是一样的.
1/(1-x²) = ∑{0 ≤ n} x^(2n),故x/(1-x²) = ∑{0 ≤ n} x^(2n+1).
求导得(1+x²)/(1-x²)² = ∑{0 ≤ n} (2n+1)·x^(2n).
代入x = 1/√3仍得3.
(2) 1/(1+x) = ∑{0 ≤ n} (-1)^n·x^n,故1/(1+x²) = ∑{0 ≤ n} (-1)^n·x^(2n).
积分得arctan(x) = ∑{0 ≤ n} (-1)^n·x^(2n+1)/(2n+1) (取x = 0可知积分常数为0).
于是arctan(x)/x = ∑{0 ≤ n} (-1)^n·x^(2n)/(2n+1).
代入x = 1/√3得∑{0 ≤ n} (-1)^n/((2n+1)·3^n) = √3·arctan(1/√3) = √3·π/6.
无穷级数的求和问题无穷级数的求和函数∑(=1,∞)n*x^(n+1),
设f(x)=lim(n趋于无穷)n次根号下[1+|x|^3n],求f(x)的
设级数∑(0到无穷)an(x-1)∧n的收敛半径是1,则级数在x=3点的敛散性是
无穷级数求和1/(2n)!,从n=1到无穷
c语言中关于级数求和的问题y(x)=x+x^3/(3*1!)+x^5/(5*2!)+.令x=0.5,1.0,2.0,3.
利用逐项求导或逐项微分求级数:求和符号,上面是无穷符号,下面是n=1,右边是(x^4n+1)\4n+1
设f(x)=lim(n趋于无穷)n次根号下[1+|x|^3n],求f(x)的不可导点
设函数fx=x-1/x,若对任意x∈[根号二,正无穷),f(mx)+mf(x)
设函数f(x)=﹛2^-x,x∈(-无穷,1] ﹛log3 x/3*log3 x/9,x∈(1,+无穷)
(求和符号n=1到正无穷)x^n/(n^2+n)利用逐项求导或逐项求积法,求该级数在收敛区间内的和函数
C语言级数求和1.【问题描述】计算下列级数和的近似值,x的值从键盘输入,求和精度为10-6.s(x)=x-x3/3!+x
求幂级数的和函数 S(x)= (x-1)^n/[n2^n] (n从1到无穷,求和)