ABCDEFG为圆内正七边形,求证,1/AB=1/AC+1/AD
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:14:50
ABCDEFG为圆内正七边形,求证,1/AB=1/AC+1/AD
不失一般性,令圆的半径为1.
AB所对的圆心角=2π/7,∴AB=2sin(π/7).
AC所对的圆心角=(2π/7)×2,∴AC=2sin(2π/7).
AD所对的圆心角=(2π/7)×3,∴AD=2sin(3π/7).
∴问题就转化成求证:1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
显然有:cos(π/7)+cos(2π/7)=cos(π/7)-cos(5π/7),
∴cos(π/7)-cos(3π/7)+cos(2π/7)-cos(4π/7)=cos(π/7)-cos(5π/7),
∴2sin(π/7)sin(2π/7)+2sin(π/7)sin(3π/7)=2sin(2π/7)sin(3π/7),
∴sin(π/7)[sin(2π/7)+sin(3π/7)]=sin(2π/7)sin(3π/7),
∴1/sin(π/7)=[sin(2π/7)+sin(3π/7)]/sin(2π/7)sin(3π/7),
∴1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
于是问题得证.
AB所对的圆心角=2π/7,∴AB=2sin(π/7).
AC所对的圆心角=(2π/7)×2,∴AC=2sin(2π/7).
AD所对的圆心角=(2π/7)×3,∴AD=2sin(3π/7).
∴问题就转化成求证:1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
显然有:cos(π/7)+cos(2π/7)=cos(π/7)-cos(5π/7),
∴cos(π/7)-cos(3π/7)+cos(2π/7)-cos(4π/7)=cos(π/7)-cos(5π/7),
∴2sin(π/7)sin(2π/7)+2sin(π/7)sin(3π/7)=2sin(2π/7)sin(3π/7),
∴sin(π/7)[sin(2π/7)+sin(3π/7)]=sin(2π/7)sin(3π/7),
∴1/sin(π/7)=[sin(2π/7)+sin(3π/7)]/sin(2π/7)sin(3π/7),
∴1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
于是问题得证.
已知:在△ABC中,AD为中线,求证:AD<1/2(AB+AC)
有钝角三角形ABC,钝角为120度,AD平分该钝角,求证1/AD=1/AB+1/AC
已知△ABC,AD为中线,求证AD^2=1/2(AB^2+AC^2)-(BC/2)^2
如图,AB>AC的三角形ABC中,AD平分角BAC,CD垂直AD,H为BC 中点,求证:DH=1/2(AB-AC)
如图,AD为△ABC中BC边上的中线,(AB>AC) (1)求证:AB-AC
在三角形ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证AB-AC>PB-PC(请用两种证法证明)
全等三角形,进来帮帮已知:在△ABC中,AD为中线,求证:AD<1/2(AB+AC)
如图,已知AD为△ABC的中线,(1)求证AB+AC>2AD;(2)若AB=8㎝,AC=5㎝,求AD的取值范围.
如图,AB=AC,DB=DC,E为AD上的一点,求证(1)AD垂直平分BC;(2)EB=EC
已知,AB=AD,AC=AE,角1=角2,求证DC=BE
如图所示,AD=AE,角1=角2,BD=CE,求证:AB=AC
如图,已知AC平分∠BAD,∠1=∠2.求证AB=AD