作业帮 > 数学 > 作业

ABCDEFG为圆内正七边形,求证,1/AB=1/AC+1/AD

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:14:50
ABCDEFG为圆内正七边形,求证,1/AB=1/AC+1/AD
ABCDEFG为圆内正七边形,求证,1/AB=1/AC+1/AD
不失一般性,令圆的半径为1.
AB所对的圆心角=2π/7,∴AB=2sin(π/7).
AC所对的圆心角=(2π/7)×2,∴AC=2sin(2π/7).
AD所对的圆心角=(2π/7)×3,∴AD=2sin(3π/7).
∴问题就转化成求证:1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
显然有:cos(π/7)+cos(2π/7)=cos(π/7)-cos(5π/7),
∴cos(π/7)-cos(3π/7)+cos(2π/7)-cos(4π/7)=cos(π/7)-cos(5π/7),
∴2sin(π/7)sin(2π/7)+2sin(π/7)sin(3π/7)=2sin(2π/7)sin(3π/7),
∴sin(π/7)[sin(2π/7)+sin(3π/7)]=sin(2π/7)sin(3π/7),
∴1/sin(π/7)=[sin(2π/7)+sin(3π/7)]/sin(2π/7)sin(3π/7),
∴1/sin(π/7)=1/sin(2π/7)+1/sin(3π/7).
于是问题得证.