求下列微分方程的通解,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/07 03:44:34
求下列微分方程的通解,
1 xy'=y+(x/lnx)
2 y'-(2y/x)=x^2sin3x
1 xy'=y+(x/lnx)
2 y'-(2y/x)=x^2sin3x
说明:这两道题可以用“常数变易法”解,也可以用“全微分法”解.
但用“全微分法”解更简洁!我只用“全微分法”,
1.∵xy'=y+(x/lnx) ==>xdy-ydx=xdx/lnx
==>(xdy-ydx)/x²=dx/(xlnx)
==>d(y/x)=d(lnx)/lnx
==>d(y/x)=d(ln|lnx|)
==>y/x=ln|lnx|+C (C是积分常数)
==>y=x(ln|lnx|+C)
∴原微分方程的通解是y=x(ln|lnx|+C) (C是积分常数)
2.∵y'-(2y/x)=x²sin3x ==>dy-(2y/x)dx=x²sin(3x)dx
==>dy/x²-(2y/x³)dx=sin(3x)dx
==>dy/x²+yd(1/x²)=-1/3d(cos(3x))
==>d(y/x²)=d(-cos(3x)/3)
==>y/x²=-cos(3x)/3+C (C是积分常数)
==>y=x²[C-cos(3x)/3]
∴原微分方程的通解是y=x²[C-cos(3x)/3] (C是积分常数)
但用“全微分法”解更简洁!我只用“全微分法”,
1.∵xy'=y+(x/lnx) ==>xdy-ydx=xdx/lnx
==>(xdy-ydx)/x²=dx/(xlnx)
==>d(y/x)=d(lnx)/lnx
==>d(y/x)=d(ln|lnx|)
==>y/x=ln|lnx|+C (C是积分常数)
==>y=x(ln|lnx|+C)
∴原微分方程的通解是y=x(ln|lnx|+C) (C是积分常数)
2.∵y'-(2y/x)=x²sin3x ==>dy-(2y/x)dx=x²sin(3x)dx
==>dy/x²-(2y/x³)dx=sin(3x)dx
==>dy/x²+yd(1/x²)=-1/3d(cos(3x))
==>d(y/x²)=d(-cos(3x)/3)
==>y/x²=-cos(3x)/3+C (C是积分常数)
==>y=x²[C-cos(3x)/3]
∴原微分方程的通解是y=x²[C-cos(3x)/3] (C是积分常数)