作业帮 > 数学 > 作业

戴德金切割定理 作为前提,有三种分类,集合A和集合B有无最大最小数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 20:15:07
戴德金切割定理 作为前提,有三种分类,集合A和集合B有无最大最小数
也就是说实质上戴德金切割定理 那三种分类实质上是在不清楚两个集合A和B的集合的范围
那么如果不说集合范围是否意味着就是向正负无穷延伸
如果是集合A没有最大数就等价于集合A就是在最小数a到正无穷的一个没有上限的集合?
设集合A没有最大数,且根据戴德金切割的定理里面任意a属于A与任意b属于B,成立a小于b
那么是否A没有最大数就等于A相交于B不等于空集,也就是趋近于无穷,反过来推理不应该是a和b的关系要重新考虑了吗
戴德金切割定理 作为前提,有三种分类,集合A和集合B有无最大最小数
你提的问题视乎有问题,你在本书上看到定理的,它是怎么讲的?
戴德金分割

由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.假设给定某种方法,把所有的有理数分为两个集合,A和B,
A中的每一个元素都小于B中的每一个元素,任何一种分类方法称为有理数的一个分割.对于任一分割, 必有3种可能, 其中有且只有1种成立:A有一个最大元素a,B没有最小元素.例如A是所有≤1的有理数,B是所有>1的有理数.
B有一个最小元素b,A没有最大元素.例如A是所有