作业帮 > 数学 > 作业

证明f(x)=x^2+1/x在(1,正无穷)上为单调增函数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:35:30
证明f(x)=x^2+1/x在(1,正无穷)上为单调增函数
如题
f(x)=x^2+(1/x)
证明f(x)=x^2+1/x在(1,正无穷)上为单调增函数
作差法.
设 p>1,q>1,p>q
f(p) = p^2 + 1/p
f(q) = q^2 + 1/q
f(p)是大于f(q) 的,因为
f(p)-f(q) = ( p^2 + 1/p) - ( q^2 + 1/q)
= (p^2 - q^2) + (1/p - 1/q)
=(p+q)(p-q) + (q-p)/pq
= (p-q)(p+q-1/pq)
p>q,所以p-q >0
p>1,q>1 所以 1/pq 1+1 -1 >0
所以f(p)-f(q)>0
f(p) >f(q)
所以f(x)=x^2+1/x在(1,正无穷)上为单调增函数