作业帮 > 数学 > 作业

对称矩阵 对角化A是对称矩阵,显然能对角化,怎么样求与其相似的对角阵

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 09:44:53
对称矩阵 对角化
A是对称矩阵,显然能对角化,怎么样求与其相似的对角阵
对称矩阵 对角化A是对称矩阵,显然能对角化,怎么样求与其相似的对角阵
因为A=bbT
而bi≠0,所以可知有
所以R(b)=R(bT)=1
所以可知R(A)≤R(b)
(定理:R(AB)≤max(R(A),R(B)))
而bi≠0,所以可知有R(A)=1
所以可化为:
第一行元素为:b1^2,b1b2...b1bn,
而从第二行到第n行均为0
所以有一个不为零的特征值.
利用公式|aE-A|=0
解得其特征值:
a1=b1^2+b2^2+...+bn^2,a2=a3=...an=0
所以可知必有n-1个特征值为0.
还有一个非零的元素为b1^2
写成对角阵即可:
对角线上为a1,a2,...an