矩形ABCD的对角线AC与BD交于点O,点E、F分别在OA、OD上,且AE=DF,求证四边形EBCF是等腰梯形
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 19:37:29
矩形ABCD的对角线AC与BD交于点O,点E、F分别在OA、OD上,且AE=DF,求证四边形EBCF是等腰梯形
先要证明EBCF是梯形,不要用 平行线分线段成比例 来做,我们没学,也不要用什么有两点重合的辅助线.
先要证明EBCF是梯形,不要用 平行线分线段成比例 来做,我们没学,也不要用什么有两点重合的辅助线.
证明:ABCD是矩形,所以AC=BD
OA=AC/2,OD=BD/2
因此OA=OD.∠OAD=∠ODA=(180-∠AOD)/2
OE=OA-AE,OF=OD-DF
因为AE=DF,所以OE=OF
因此∠OEF=∠OFE=(180-∠AOD)/2
所以∠OEF=∠OAD,EF∥AD∥BC
在△OEB和△OFC中
OE=OF,
∠EOB=∠FOC,
OB=OC,
所以△OEB≌△OFC
BE=CF
因为BE不平行CF,所以EBCF是梯形.
且BE=CF,因此是等腰梯形
OA=AC/2,OD=BD/2
因此OA=OD.∠OAD=∠ODA=(180-∠AOD)/2
OE=OA-AE,OF=OD-DF
因为AE=DF,所以OE=OF
因此∠OEF=∠OFE=(180-∠AOD)/2
所以∠OEF=∠OAD,EF∥AD∥BC
在△OEB和△OFC中
OE=OF,
∠EOB=∠FOC,
OB=OC,
所以△OEB≌△OFC
BE=CF
因为BE不平行CF,所以EBCF是梯形.
且BE=CF,因此是等腰梯形
已知:如图,矩形ABCD的对角线AC与BD相交于点O,点E、F分别在OA、OD上,且AE=DF.求证:四边形EBCF是等
矩形ABCD中,AC和BD交于点O,E,F分别是OA,OD的中点,求证:四边形EBCF是等腰梯形
已知:如图,在矩形ABCD中,AC,BD相交于点O,E,F分别是OA,OD的中点,求证,四边形EBCF是等腰梯形
在矩形ABCD中,E、F分别在对角线AC、BD上,且AE=DF,求证:四边形EBCF是等腰梯形.
已知:如图,矩形ABCD的对角线AC与BD相交于点O,点E、F分别在OA、OD上,且AE=DF.
矩形ABCD的对角线AC,BD相交与点O,点E,F分别在OA,OD上,且AE=DF
在梯形ABCD中,AD//BC,AB=CD,对角线AC、BD交于点O,点E、F分别在线段OA、OD上,且AE=DF,求证
如图ABCD矩形 E F在对角线AC BD上 AE=DF 求证EBCF是等腰梯形
在矩形ABCD中,AC,BD相交于点O,E,F分别是OA,OD的中点.求证:四边形BCFE是等腰梯形
已知:如图,矩形ABCD的对角线AC与BD相交于点O,点E、F分别在OA、OB上,且AE=DF.
已知在矩形ABCD中,AC,BD交于点O,M,N分别是OA,OD的中点.求证:四边形MBCN是等腰梯形.
如图,在正方形ABCD中,对角线AC、BD交于点O,点E、F分别在OD、OC上,且DE=CF,连接DF,AE.