已知圆Ox^2+y^2=1和定点A(2,1).P是圆O外一动点,且过点P向圆O引切线PQ,切点为Q,若丨PQ丨=丨PA丨
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 18:39:58
已知圆Ox^2+y^2=1和定点A(2,1).P是圆O外一动点,且过点P向圆O引切线PQ,切点为Q,若丨PQ丨=丨PA丨,(1
求动点P的轨迹方程.(2)求PQ的最小值.(3)若以P为圆心所作的圆P与圆O有公共点,求出圆P的半径最小时圆P的方程.
求动点P的轨迹方程.(2)求PQ的最小值.(3)若以P为圆心所作的圆P与圆O有公共点,求出圆P的半径最小时圆P的方程.
(1)设P(x,y)则 x^2+y^2=1^2+(x-2)^2+(y-1)^2化简得2x+y=3
(2)丨PQ丨=丨PA丨所以 PQ=√((x-2)^2+(y-1)^2)把y=3-2x代入可得
PQ=√(5x^2-12x+8)=√(5(x-6/5)^2-36/5+8)=√(5(x-6/5)^2+4/5)》√(4/5)所以最小值为√(4/5)
(3)圆P的半径最小时,圆P与圆O相切,则过原点做直线2x+y=3的垂线,距离为(3√5)/5
所以半径为((3√5)/5-1) 圆P的圆点坐标为(6/5,3/5)
所以圆P的方程为(x-6/5)^2+(y-3/5)^2=((3√5)/5-1) ^2
(2)丨PQ丨=丨PA丨所以 PQ=√((x-2)^2+(y-1)^2)把y=3-2x代入可得
PQ=√(5x^2-12x+8)=√(5(x-6/5)^2-36/5+8)=√(5(x-6/5)^2+4/5)》√(4/5)所以最小值为√(4/5)
(3)圆P的半径最小时,圆P与圆O相切,则过原点做直线2x+y=3的垂线,距离为(3√5)/5
所以半径为((3√5)/5-1) 圆P的圆点坐标为(6/5,3/5)
所以圆P的方程为(x-6/5)^2+(y-3/5)^2=((3√5)/5-1) ^2
已知圆O:X2+Y2=1和定点A(2,1),由圆外一点P(A,B)向圆O引切线PQ,切点为Q,且满足PQ绝对值=PA绝对
如图,已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足PQ=PA,
已知圆O:X的平方+Y的平方=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,满足|PQ|=|
如图,已知圆O:x^2+y^2和定点A(2,2),由圆o外一点p(a,b)向圆o引切线PQ,Q为切点,且满足|PQ|=|
一道数学综合题已知圆O:x^2+y^2=1和定点(2,1)由圆O外一点(a,b)向圆O引切线PQ,切点为Q,且满足 PQ
已知圆O:X2+Y2=1和定点A (2,1),由圆O外一点P(a,b)像圆O引切线PQ,切点为Q,且满足绝
已知⊙O是以原点为圆心,√2为半径的圆,点P是直线y=-x+6上的一点,过P作⊙O的一条切线PQ,Q为切点,则切线长PQ
过点P(m,3)向圆(x+2)^2+(y+2)^2=1引切线,切点为Q,则切线长PQ最小值
求过点M(2,4)向圆C(x-1)^2+(y+3)^2=1引两条切线,切点分别为P,Q 求PQ方程 求切点弦PQ的长
已知点P为圆x^2+y^2=4a^2上一动点,Q(2c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直
已知圆o:X^2+Y^2=1,点p是椭圆c:x^2/4+Y^2=1上一点,过点p作圆o的两条切线PA,PB,A,B为切点
一道高一数学题已知圆O:x²+y²=1和定点A(2,1)由圆外一点P(a,b)向圆O引切线,切点为Q