设二阶方阵A的特征值为1和2,且(0,1)^T和(1,1)^T分别为对应的特征向量,则A^n=
设3阶方阵A有特征值-1,1,1对应的特征向量分别为(1,-1,1)^T,(1,0,-1)^T,(1,2,-4)^T,求
设方阵A的特征值3对应的特征向量为(1,3,-1)^T,则A(1,3,-1)^T=?
设n阶方阵A的两个特征值λ1,λ2所对应的特征向量分别为a1与a2,且λ1=-λ2不等于0,判断a1,a2是否A的特征
2阶实对称矩阵A的特征值为1,2,对应特征向量分别为a1=(1,1)T,a2=(1,K)T,则K=
设三阶方阵A的一个特征值为1/9,对应的特征向量a为(1,1,1)^T,求方阵A9个元素之和.
已知3阶实对称矩阵A的特征值为2,2,3,且2所对应的特征向量为[1,2,3]T和[-1,2,-1]T,则3所对应的特征
已知三阶实对称矩阵A的特征值为0.1.1,0对应的特征向量为(0,1,1)T,求特征值1对应的特征向量和矩阵A
已知3阶方阵A的特征值为1,0,-1,对应的特征向量依次为P1=(1,2,2)T,P2=(2,-2,1)T,P3=(-2
设三阶矩阵A的三个特征值为1,1,2,且a1,a2,a3分别为对应的特征向量,则
设A为3阶方阵,A的3个特征值分别为1,-1,2,对应的特征向量分别为α1,α2,α3,
已知三阶实对称矩阵A的特征值为1,1,-2,且(0,1,1)T,是对应于-2的特征向量,求A.
若n阶方阵A的各列元素之和均为2,证明n维向量x=(1,1,……,1)的T次方,为A的T次方的特征向量,并且相应的特征值