作业帮 > 数学 > 作业

关于用行列式判定方程组解的个数的理解问题

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 20:30:34
关于用行列式判定方程组解的个数的理解问题
为什么说D不等于0,方程就有解;D=0且Dx或Dy不等于0,方程无解;Dx=
Dy=D=0,方程有无穷多个解,
关于用行列式判定方程组解的个数的理解问题
D是系数矩阵行列式.D不等于0,说明解向量线性无关,也可以理解为解向量满秩,所以“D不等于0时”对应的齐次线性方程组只有零解,而相应的非齐次线性方程组只有唯一解(也就是特解).
Dx=Dy=D=0,说明系数矩阵和增广矩阵的行列式都等于零,也就是说明存在线性相关的解向量,既然解向量线性相关,那么就可以列出无穷多个解.简单来说,就比如Y=aX+b,你可以定义无穷多个X,那么就存在无穷多个Y,这里的X、Y是两个解向量,a、b是两个实数.
“D=0且Dx或Dy不等于0,方程无解”你这句话是不是打错了啊,应该是系数矩阵行列式等于0,增广矩阵行列式不等于0.也可以说系数矩阵不满秩,而增广矩阵满秩(对应方阵情况).或者严格来说是系数矩阵的秩小于增广矩阵的秩.简单理解就是比如
a11*x1+a12*x2+a13*x3=b1
a21*x1+a22*x2+a23*x3=b2
0*x1+0*x2+0*x3=b3
这里我们令a31=0,a32=0,a33=0.这样就写出上面的式子.而b3还是个实数.这就是说,系数矩阵A的行列式=0,而增广矩阵的行列式不等于0.所以无解.
说了这么多,