如图,AB是半圆O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 11:06:00
如图,AB是半圆O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.
(1)求证:△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.
(1)求证:△ABC∽△OFB;
(2)当△ABD与△BFO的面枳相等时,求BQ的长;
(3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点.
(1)证明:∵AB为直径,
∴∠ACB=90°,即:AC⊥BC,
又OE⊥BC,
∴OE∥AC,
∴∠BAC=∠FOB,
∵BN是半圆的切线,
∴∠BCA=∠FBO=90°,
∴△ABC∽△OFB.
(2)连接OP,
由△ACB∽△OBF得,∠OFB=∠DBA,∠BCA=∠FBO=90°,
∵AM、BN是⊙O的切线,
∴∠DAB=∠OBF=90°,
∴△ABD∽△BFO,
∴当△ABD与△BFO的面积相等时,△ABD≌△BFO,
∴AD=OB=1,
∵DP切圆O,DA切圆O,
∴DP=DA,
∵△ABD≌△BFO,
∴DA=BO=PO=DP,
又∵∠DAO=∠DPO=90°,
∴四边形AOPD是正方形,
∴DQ∥AB,
∴四边形ABQD是矩形,
∴BQ=AD=1;
(3)证明:由(2)知,△ABD∽△BFO,
∴
BF
OB=
AB
AD,
∴BF=
OB•AB
AD=
1×2
AD=
2
AD,
∵DP是半圆O的切线,射线AM、BN为半圆O的切线,
∴AD=DP,QB=QP,
过Q点作AM的垂线QK,垂足为K,在Rt△DQK中,
DQ2=QK2+DK2,
∴(AD+BQ)2=(AD-BQ)2+22.
∴BQ=
1
AD,
∴BF=2BQ,
∴Q为BF的中点.
∴∠ACB=90°,即:AC⊥BC,
又OE⊥BC,
∴OE∥AC,
∴∠BAC=∠FOB,
∵BN是半圆的切线,
∴∠BCA=∠FBO=90°,
∴△ABC∽△OFB.
(2)连接OP,
由△ACB∽△OBF得,∠OFB=∠DBA,∠BCA=∠FBO=90°,
∵AM、BN是⊙O的切线,
∴∠DAB=∠OBF=90°,
∴△ABD∽△BFO,
∴当△ABD与△BFO的面积相等时,△ABD≌△BFO,
∴AD=OB=1,
∵DP切圆O,DA切圆O,
∴DP=DA,
∵△ABD≌△BFO,
∴DA=BO=PO=DP,
又∵∠DAO=∠DPO=90°,
∴四边形AOPD是正方形,
∴DQ∥AB,
∴四边形ABQD是矩形,
∴BQ=AD=1;
(3)证明:由(2)知,△ABD∽△BFO,
∴
BF
OB=
AB
AD,
∴BF=
OB•AB
AD=
1×2
AD=
2
AD,
∵DP是半圆O的切线,射线AM、BN为半圆O的切线,
∴AD=DP,QB=QP,
过Q点作AM的垂线QK,垂足为K,在Rt△DQK中,
DQ2=QK2+DK2,
∴(AD+BQ)2=(AD-BQ)2+22.
∴BQ=
1
AD,
∴BF=2BQ,
∴Q为BF的中点.
已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.
如图已知c是以AB为直径的半圆O上,CF⊥AB于点F,直线AC与过B点的切线相交于点D,E是BD的中点,连接AE交CF于
如图已知C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点切线相交于点D,E为CH中点,连接AE并延长交
如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA
如图,AB是半圆O的直径,过半圆O上的一点D分别作AB的垂线与半圆O的切线,交直线AB于点E与点C,
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH的中点,连接AE
如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并
如图,AB是半圆O的直径,C为半圆上一点,过C作半圆的切线,连接AC,作直线AD,使∠DAC=∠CAB
如图,已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且CD=32R,试求AC的长.
如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab
如图,AB是⊙O的直径,P为AB延长线上任意一点,C为半圆ACB的中点,PD切⊙O于点D,连接CD交AB于点E.
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1