(2010•鞍山)①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:20:32
(2010•鞍山)①如图,四边形ABCD中,对角线相交于点O,E、F、G、H分别是AD,BD,BC,AC的中点.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.
(1)求证:四边形EFGH是平行四边形;
(2)当四边形ABCD满足一个什么条件时,四边形EFGH是菱形?并证明你的结论;
②如图,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC中点,CE⊥AD于E,BF∥AC,交CE的延长线与点F.求证:AB垂直平分DF.
①(1)证明:
∵E、F分别是AD、BD中点,
∴EF∥AB,EF=
1
2AB,
同理GH∥AB,GH=
1
2AB,
∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.
(2)当四边形ABCD满足AB=CD时,四边形EFGH是菱形.
证明:F、G分别是BD、BC中点,所以GF=
1
2CD,
∵AB=CD,∴EF=GF
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
②证明:∵∠ACB=90°,Rt△ADC中,∠1+∠2=90°,
∵AD⊥CF,在Rt△EDC中,∠3+∠2=90°,得:∠1=∠3.
∵FB∥AC,∠ACB=90°,∴∠FBC=90°,得:△FBC是直角三角形.
∵AC=BC,∠1=∠3,△FBC是直角三角形
∴Rt△ADC≌Rt△FBC.
∴CD=FB,已知CD=DB,可得:DB=FB.
由AC=BC、∠ACB=90°,可得:∠4=45°,AB是∠CBF平分线.
所以,AB垂直平分DF(等腰三角形中的三线合一定理).
∵E、F分别是AD、BD中点,
∴EF∥AB,EF=
1
2AB,
同理GH∥AB,GH=
1
2AB,
∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.
(2)当四边形ABCD满足AB=CD时,四边形EFGH是菱形.
证明:F、G分别是BD、BC中点,所以GF=
1
2CD,
∵AB=CD,∴EF=GF
又∵四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
②证明:∵∠ACB=90°,Rt△ADC中,∠1+∠2=90°,
∵AD⊥CF,在Rt△EDC中,∠3+∠2=90°,得:∠1=∠3.
∵FB∥AC,∠ACB=90°,∴∠FBC=90°,得:△FBC是直角三角形.
∵AC=BC,∠1=∠3,△FBC是直角三角形
∴Rt△ADC≌Rt△FBC.
∴CD=FB,已知CD=DB,可得:DB=FB.
由AC=BC、∠ACB=90°,可得:∠4=45°,AB是∠CBF平分线.
所以,AB垂直平分DF(等腰三角形中的三线合一定理).
如图,四边形ABCD中,对角线AC,BD相交于点,O,E,F,G,H分别是AD,BD,BC,AC的中点
如图,四边形ABCD中,对角线相交于点O,E,F,G,H,分别是AD,BD,BC,AC的中点 1
如图,四边形ABCD中,对角线相交于O,E F G H 分别是AD,BD,BC,AC的中点.求证:四边形EFGH是平行四
如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F,G,H分别是AD,OB,BC,OD的中点.求证:四边
在平行四边形ABCD中,对角线AC,BD相交于点o,点E,F,G,H分别是AD,OB,BC,OD的中点.求证:四边形EF
在平行四边形ABCD中,对角线AC,BD相交于点o,点E,F,G,H分别是AD,OB,BC,OD的中点.求证:(1)四边
如图,四边形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点,四边形EFGH是平行
如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F,G,H分别是AO,BO,CO,DO的中点,求证:四边形E
在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F,G,H 分别是AD,OB,BC,OD的中点,
如图已知四边形ABCD,对角线AC垂直BD于O,E、F、G、H分别为边AB、BC、CD、AD的中点.求证:四边形EFGH
如图 在四边形ABCD中 点E、F、G、H 分别是BD BC AC AD 的中点
如图,在正方形ABCD中,对角线AC和BD相交于点O ,点E,F,G,H分别是AO,BO,CO ,DC的中点